Ontology type: schema:Chapter Open Access: True
2013
AUTHORSClaire Caillerie , Frédéric Chazal , Jérôme Dedecker , Bertrand Michel
ABSTRACTThis paper is a short presentation of recent results about Wasserstein deconvolution for topological inference published in [1]. A distance function to measures has been defined in [2] to answer geometric inference problems in a probabilistic setting. According to their result, the topological properties of a shape can be recovered by using the distance to a known measure ν, if ν is close enough to a measure μ for he Wasserstein distance W 2. Given a point cloud, a natural candidate for ν is the empirical measure μ n . Nevertheless, in many situations the data points are not located on the geometric shape but in the neighborhood of it, and μ n can be too far from μ. In a deconvolution framework, we consider a slight modification of the classical kernel deconvolution estimator, and we give a consistency result and rates of convergence for this estimator. Some simulated experiments illustrate the deconvolution method and its application to geometric inference on various shapes and with various noise distributions. More... »
PAGES561-568
Geometric Science of Information
ISBN
978-3-642-40019-3
978-3-642-40020-9
http://scigraph.springernature.com/pub.10.1007/978-3-642-40020-9_62
DOIhttp://dx.doi.org/10.1007/978-3-642-40020-9_62
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1017389601
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Inria Saclay - \u00cele-de-France Research Centre",
"id": "https://www.grid.ac/institutes/grid.457355.5",
"name": [
"INRIA Saclay, Parc Club Orsay Universit\u00e9, 2-4 rue Jacques Monod, 91893\u00a0Orsay Cedex, France"
],
"type": "Organization"
},
"familyName": "Caillerie",
"givenName": "Claire",
"id": "sg:person.015166774605.16",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015166774605.16"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Inria Saclay - \u00cele-de-France Research Centre",
"id": "https://www.grid.ac/institutes/grid.457355.5",
"name": [
"INRIA Saclay, Parc Club Orsay Universit\u00e9, 2-4 rue Jacques Monod, 91893\u00a0Orsay Cedex, France"
],
"type": "Organization"
},
"familyName": "Chazal",
"givenName": "Fr\u00e9d\u00e9ric",
"id": "sg:person.07731752407.94",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07731752407.94"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Paris Descartes University",
"id": "https://www.grid.ac/institutes/grid.10992.33",
"name": [
"Laboratoire MAP5, UMR CNRS 8145 Universit\u00e9 Paris Descartes, 45, rue des Saints P\u00e8res, 75270\u00a0Paris Cedex 06, France"
],
"type": "Organization"
},
"familyName": "Dedecker",
"givenName": "J\u00e9r\u00f4me",
"id": "sg:person.012346603211.22",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012346603211.22"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratoire de Statistique Th\u00e9orique et Appliqu\u00e9e",
"id": "https://www.grid.ac/institutes/grid.463964.a",
"name": [
"Laboratoire de Statistique Th\u00e9orique et Appliqu\u00e9e, Universit\u00e9 Pierre et Marie Curie - Paris 6, 4 place Jussieu, 75252\u00a0Paris cedex 05, France"
],
"type": "Organization"
},
"familyName": "Michel",
"givenName": "Bertrand",
"id": "sg:person.016617520265.86",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016617520265.86"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1016/j.comgeo.2007.07.001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004595365"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1111/j.1467-9868.2011.00775.x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005321547"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10208-011-9098-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011317459",
"https://doi.org/10.1007/s10208-011-9098-0"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jmva.2013.08.009",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024632361"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0377-0427(94)90033-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031838083"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00454-009-9144-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039155542",
"https://doi.org/10.1007/s00454-009-9144-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00454-009-9144-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039155542",
"https://doi.org/10.1007/s00454-009-9144-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00454-009-9144-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039155542",
"https://doi.org/10.1007/s00454-009-9144-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-71050-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043936119",
"https://doi.org/10.1007/978-3-540-71050-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-71050-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043936119",
"https://doi.org/10.1007/978-3-540-71050-9"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/02331880600723101",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046138212"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/02331889008802238",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046924111"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jmva.2005.04.004",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049397185"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/01621459.1988.10478718",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058303695"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/01621459.1989.10478797",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058303774"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1198/016214502760047050",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064198011"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1214/08-aos671",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064390244"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1214/11-ejs646",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064392594"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1214/aos/1016218232",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064405931"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4310/sdg.2006.v11.n1.a6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072463927"
],
"type": "CreativeWork"
}
],
"datePublished": "2013",
"datePublishedReg": "2013-01-01",
"description": "This paper is a short presentation of recent results about Wasserstein deconvolution for topological inference published in [1]. A distance function to measures has been defined in [2] to answer geometric inference problems in a probabilistic setting. According to their result, the topological properties of a shape can be recovered by using the distance to a known measure \u03bd, if \u03bd is close enough to a measure \u03bc for he Wasserstein distance W 2. Given a point cloud, a natural candidate for \u03bd is the empirical measure \u03bc n . Nevertheless, in many situations the data points are not located on the geometric shape but in the neighborhood of it, and \u03bc n can be too far from \u03bc. In a deconvolution framework, we consider a slight modification of the classical kernel deconvolution estimator, and we give a consistency result and rates of convergence for this estimator. Some simulated experiments illustrate the deconvolution method and its application to geometric inference on various shapes and with various noise distributions.",
"editor": [
{
"familyName": "Nielsen",
"givenName": "Frank",
"type": "Person"
},
{
"familyName": "Barbaresco",
"givenName": "Fr\u00e9d\u00e9ric",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-40020-9_62",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-642-40019-3",
"978-3-642-40020-9"
],
"name": "Geometric Science of Information",
"type": "Book"
},
"name": "Deconvolution for the Wasserstein Metric and Geometric Inference",
"pagination": "561-568",
"productId": [
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-40020-9_62"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"52d9bb514750678a902a4ecab2463587bfdd5dec413885d1cb2ea78e54d9a8c2"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1017389601"
]
}
],
"publisher": {
"location": "Berlin, Heidelberg",
"name": "Springer Berlin Heidelberg",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-40020-9_62",
"https://app.dimensions.ai/details/publication/pub.1017389601"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-15T23:51",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000253.jsonl",
"type": "Chapter",
"url": "http://link.springer.com/10.1007/978-3-642-40020-9_62"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40020-9_62'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40020-9_62'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40020-9_62'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40020-9_62'
This table displays all metadata directly associated to this object as RDF triples.
151 TRIPLES
23 PREDICATES
44 URIs
20 LITERALS
8 BLANK NODES