Optimal Transport and Minimal Trade Problem, Impacts on Relational Metrics and Applications to Large Graphs and Networks Modularity View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013

AUTHORS

F. Marcotorchino , P. Conde Céspedes

ABSTRACT

This article presents a summary of the principal results found in MAR13. Starting with the seminal works on transportation theory of G. Monge and L. Kantorovich, while revisiting the works of Maurice Fréchet, we will introduce direct derivations of the optimal transport problem such as the so-called Alan Wilson’s Entropy Model and the Minimal Trade Problem. We will show that optimal solutions of those models are mainly based in two dual principles: the independance and the indetermination structure between two categorical variables. Thanks to Mathematical Relational Analysis representation and the Antoine Caritat’s (Condorcet) works on Relational Consensus, we will give an interesting interpretation to the indeterminaion structure and underline the duality Relationship between deviation to independence and deviation to indetermination structures. Finally, these results will lead us to the elaboration of a new criterion of modularization for large networks. More... »

PAGES

169-179

Book

TITLE

Geometric Science of Information

ISBN

978-3-642-40019-3
978-3-642-40020-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-40020-9_17

DOI

http://dx.doi.org/10.1007/978-3-642-40020-9_17

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029668260


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratoire de Statistique Th\u00e9orique et Appliqu\u00e9e", 
          "id": "https://www.grid.ac/institutes/grid.463964.a", 
          "name": [
            "Thales Communications et S\u00e9curit\u00e9, TCS, Gennevilliers, France and (LSTA), Universit\u00e9 Pierre et Marie Curie, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marcotorchino", 
        "givenName": "F.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Statistique Th\u00e9orique et Appliqu\u00e9e", 
          "id": "https://www.grid.ac/institutes/grid.463964.a", 
          "name": [
            "Laboratoire de Statistique th\u00e9orique et Appliqu\u00e9e (LSTA), Universit\u00e9 Pierre et Marie Curie, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "C\u00e9spedes", 
        "givenName": "P. Conde", 
        "id": "sg:person.014030537021.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014030537021.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0041-1647(67)90035-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018446672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0041-1647(67)90035-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018446672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/asm.3150030305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019737858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471743984.vse5991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053090966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177731829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064402451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/gsm/058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098710084"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "This article presents a summary of the principal results found in MAR13. Starting with the seminal works on transportation theory of G. Monge and L. Kantorovich, while revisiting the works of Maurice Fr\u00e9chet, we will introduce direct derivations of the optimal transport problem such as the so-called Alan Wilson\u2019s Entropy Model and the Minimal Trade Problem. We will show that optimal solutions of those models are mainly based in two dual principles: the independance and the indetermination structure between two categorical variables. Thanks to Mathematical Relational Analysis representation and the Antoine Caritat\u2019s (Condorcet) works on Relational Consensus, we will give an interesting interpretation to the indeterminaion structure and underline the duality Relationship between deviation to independence and deviation to indetermination structures. Finally, these results will lead us to the elaboration of a new criterion of modularization for large networks.", 
    "editor": [
      {
        "familyName": "Nielsen", 
        "givenName": "Frank", 
        "type": "Person"
      }, 
      {
        "familyName": "Barbaresco", 
        "givenName": "Fr\u00e9d\u00e9ric", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-40020-9_17", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-40019-3", 
        "978-3-642-40020-9"
      ], 
      "name": "Geometric Science of Information", 
      "type": "Book"
    }, 
    "name": "Optimal Transport and Minimal Trade Problem, Impacts on Relational Metrics and Applications to Large Graphs and Networks Modularity", 
    "pagination": "169-179", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-40020-9_17"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8d55325a2b8c93825a15df8dfb98db1858ff5462c5a824432da6d90951ac89da"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029668260"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-40020-9_17", 
      "https://app.dimensions.ai/details/publication/pub.1029668260"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T23:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000261.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-40020-9_17"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40020-9_17'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40020-9_17'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40020-9_17'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-40020-9_17'


 

This table displays all metadata directly associated to this object as RDF triples.

92 TRIPLES      23 PREDICATES      32 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-40020-9_17 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N8b0dc53399894236bb5e16f225d72ef2
4 schema:citation https://doi.org/10.1002/0471743984.vse5991
5 https://doi.org/10.1002/asm.3150030305
6 https://doi.org/10.1016/0041-1647(67)90035-4
7 https://doi.org/10.1090/gsm/058
8 https://doi.org/10.1214/aoms/1177731829
9 schema:datePublished 2013
10 schema:datePublishedReg 2013-01-01
11 schema:description This article presents a summary of the principal results found in MAR13. Starting with the seminal works on transportation theory of G. Monge and L. Kantorovich, while revisiting the works of Maurice Fréchet, we will introduce direct derivations of the optimal transport problem such as the so-called Alan Wilson’s Entropy Model and the Minimal Trade Problem. We will show that optimal solutions of those models are mainly based in two dual principles: the independance and the indetermination structure between two categorical variables. Thanks to Mathematical Relational Analysis representation and the Antoine Caritat’s (Condorcet) works on Relational Consensus, we will give an interesting interpretation to the indeterminaion structure and underline the duality Relationship between deviation to independence and deviation to indetermination structures. Finally, these results will lead us to the elaboration of a new criterion of modularization for large networks.
12 schema:editor N42f3b8e3d2814048afb18aec8831beea
13 schema:genre chapter
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N590c532e46344473a807f619242cf5da
17 schema:name Optimal Transport and Minimal Trade Problem, Impacts on Relational Metrics and Applications to Large Graphs and Networks Modularity
18 schema:pagination 169-179
19 schema:productId N0fc395612d1d42f5adf0a76ad43fd47b
20 N7785f6a3df3243659c4b4bef6db1057c
21 N8d1320f25c394ed89ffefcdb458d431f
22 schema:publisher Nf9a5bc172a8d42d791d4d0f2a568a673
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029668260
24 https://doi.org/10.1007/978-3-642-40020-9_17
25 schema:sdDatePublished 2019-04-15T23:52
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher Nde2af31c48f64eefa00619e58a278ba9
28 schema:url http://link.springer.com/10.1007/978-3-642-40020-9_17
29 sgo:license sg:explorer/license/
30 sgo:sdDataset chapters
31 rdf:type schema:Chapter
32 N0fc395612d1d42f5adf0a76ad43fd47b schema:name readcube_id
33 schema:value 8d55325a2b8c93825a15df8dfb98db1858ff5462c5a824432da6d90951ac89da
34 rdf:type schema:PropertyValue
35 N1c00f85498344d4f881f8fed7ef588cb schema:familyName Barbaresco
36 schema:givenName Frédéric
37 rdf:type schema:Person
38 N1d31fe68a1694df2ac58e3394cac3371 schema:familyName Nielsen
39 schema:givenName Frank
40 rdf:type schema:Person
41 N42f3b8e3d2814048afb18aec8831beea rdf:first N1d31fe68a1694df2ac58e3394cac3371
42 rdf:rest N97b0f17fda0e412dbdcf55c10b89718a
43 N590c532e46344473a807f619242cf5da schema:isbn 978-3-642-40019-3
44 978-3-642-40020-9
45 schema:name Geometric Science of Information
46 rdf:type schema:Book
47 N7785f6a3df3243659c4b4bef6db1057c schema:name doi
48 schema:value 10.1007/978-3-642-40020-9_17
49 rdf:type schema:PropertyValue
50 N7fbe234aa24d47ffb6004bf7cf93a465 rdf:first sg:person.014030537021.43
51 rdf:rest rdf:nil
52 N8b0dc53399894236bb5e16f225d72ef2 rdf:first N92752f38ed4747269f52784331643156
53 rdf:rest N7fbe234aa24d47ffb6004bf7cf93a465
54 N8d1320f25c394ed89ffefcdb458d431f schema:name dimensions_id
55 schema:value pub.1029668260
56 rdf:type schema:PropertyValue
57 N92752f38ed4747269f52784331643156 schema:affiliation https://www.grid.ac/institutes/grid.463964.a
58 schema:familyName Marcotorchino
59 schema:givenName F.
60 rdf:type schema:Person
61 N97b0f17fda0e412dbdcf55c10b89718a rdf:first N1c00f85498344d4f881f8fed7ef588cb
62 rdf:rest rdf:nil
63 Nde2af31c48f64eefa00619e58a278ba9 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 Nf9a5bc172a8d42d791d4d0f2a568a673 schema:location Berlin, Heidelberg
66 schema:name Springer Berlin Heidelberg
67 rdf:type schema:Organisation
68 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
69 schema:name Mathematical Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
72 schema:name Applied Mathematics
73 rdf:type schema:DefinedTerm
74 sg:person.014030537021.43 schema:affiliation https://www.grid.ac/institutes/grid.463964.a
75 schema:familyName Céspedes
76 schema:givenName P. Conde
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014030537021.43
78 rdf:type schema:Person
79 https://doi.org/10.1002/0471743984.vse5991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053090966
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1002/asm.3150030305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019737858
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1016/0041-1647(67)90035-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018446672
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1090/gsm/058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098710084
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1214/aoms/1177731829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064402451
88 rdf:type schema:CreativeWork
89 https://www.grid.ac/institutes/grid.463964.a schema:alternateName Laboratoire de Statistique Théorique et Appliquée
90 schema:name Laboratoire de Statistique théorique et Appliquée (LSTA), Université Pierre et Marie Curie, Paris, France
91 Thales Communications et Sécurité, TCS, Gennevilliers, France and (LSTA), Université Pierre et Marie Curie, Paris, France
92 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...