2013
AUTHORSMatthieu Ambroise , Timothée Levi , Sylvain Saïghi
ABSTRACTMost of rhythmic movements are programmed by central pattern-generating networks that comprise neural oscillators. In this article, we implement a real-time biorealistic central pattern generator (CPG) into digital hardware (FPGA) for future hybrid experiments with biological neurons. This CPG mimics the Leech heartbeat neural network system. This system is composed of a neuron core from Izhikevich model, a biorealistic synaptic core and a topology to configure the table of connectivity of the different neurons. Our implementation needs few resources and few memories. Thanks to that, we could implement network of these CPG for instance to mimic the behavior of a salamander. Our system is validated by comparing our results to biological data. More... »
PAGES347-349
Biomimetic and Biohybrid Systems
ISBN
978-3-642-39801-8
978-3-642-39802-5
http://scigraph.springernature.com/pub.10.1007/978-3-642-39802-5_30
DOIhttp://dx.doi.org/10.1007/978-3-642-39802-5_30
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1052312375
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Neurosciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Medical and Health Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Bordeaux",
"id": "https://www.grid.ac/institutes/grid.412041.2",
"name": [
"IMS Laboratory, University of Bordeaux, Talence, France"
],
"type": "Organization"
},
"familyName": "Ambroise",
"givenName": "Matthieu",
"id": "sg:person.01275741300.42",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275741300.42"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Bordeaux",
"id": "https://www.grid.ac/institutes/grid.412041.2",
"name": [
"IMS Laboratory, University of Bordeaux, Talence, France"
],
"type": "Organization"
},
"familyName": "Levi",
"givenName": "Timoth\u00e9e",
"id": "sg:person.01344054500.28",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344054500.28"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Bordeaux",
"id": "https://www.grid.ac/institutes/grid.412041.2",
"name": [
"IMS Laboratory, University of Bordeaux, Talence, France"
],
"type": "Organization"
},
"familyName": "Sa\u00efghi",
"givenName": "Sylvain",
"id": "sg:person.0705115506.81",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705115506.81"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1023/a:1011216131638",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009864201",
"https://doi.org/10.1023/a:1011216131638"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-02478-8_13",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019307887",
"https://doi.org/10.1007/978-3-642-02478-8_13"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-02478-8_13",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019307887",
"https://doi.org/10.1007/978-3-642-02478-8_13"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tnn.2003.820440",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061716640"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/biocas.2008.4696931",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1095024453"
],
"type": "CreativeWork"
}
],
"datePublished": "2013",
"datePublishedReg": "2013-01-01",
"description": "Most of rhythmic movements are programmed by central pattern-generating networks that comprise neural oscillators. In this article, we implement a real-time biorealistic central pattern generator (CPG) into digital hardware (FPGA) for future hybrid experiments with biological neurons. This CPG mimics the Leech heartbeat neural network system. This system is composed of a neuron core from Izhikevich model, a biorealistic synaptic core and a topology to configure the table of connectivity of the different neurons. Our implementation needs few resources and few memories. Thanks to that, we could implement network of these CPG for instance to mimic the behavior of a salamander. Our system is validated by comparing our results to biological data.",
"editor": [
{
"familyName": "Lepora",
"givenName": "Nathan F.",
"type": "Person"
},
{
"familyName": "Mura",
"givenName": "Anna",
"type": "Person"
},
{
"familyName": "Krapp",
"givenName": "Holger G.",
"type": "Person"
},
{
"familyName": "Verschure",
"givenName": "Paul F. M. J.",
"type": "Person"
},
{
"familyName": "Prescott",
"givenName": "Tony J.",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-39802-5_30",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-642-39801-8",
"978-3-642-39802-5"
],
"name": "Biomimetic and Biohybrid Systems",
"type": "Book"
},
"name": "Leech Heartbeat Neural Network on FPGA",
"pagination": "347-349",
"productId": [
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-39802-5_30"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"f92e85f62d945ee0f392485b5b4a9c06d45ecdb75856767b8dde89c5208a038e"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1052312375"
]
}
],
"publisher": {
"location": "Berlin, Heidelberg",
"name": "Springer Berlin Heidelberg",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-39802-5_30",
"https://app.dimensions.ai/details/publication/pub.1052312375"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-15T21:05",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000275.jsonl",
"type": "Chapter",
"url": "http://link.springer.com/10.1007/978-3-642-39802-5_30"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-39802-5_30'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-39802-5_30'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-39802-5_30'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-39802-5_30'
This table displays all metadata directly associated to this object as RDF triples.
113 TRIPLES
23 PREDICATES
31 URIs
20 LITERALS
8 BLANK NODES