A Parametric Copula Approach for Modelling Shortest-Path Trees in Telecommunication Networks View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013

AUTHORS

David Neuhäuser , Christian Hirsch , Catherine Gloaguen , Volker Schmidt

ABSTRACT

We extend the Stochastic Subscriber Line Model by the introduction of shortest-path trees which are obtained by splitting up the segment system of the typical serving zone at its crossings and endings. Due to reasons in the complex field of cost and capacity estimation in telecommunication networks, it is desirable to gain knowledge about distributional properties of the branches of these trees. The present paper shows how to obtain parametric approximation formulas for the univariate density functions of the lengths of the two main branches in shortest-path trees. Besides, we derive a joint bivariate distribution for the lengths of these branches by means of copula functions, i.e., we give a parametric composition formula of the marginals. These approximative parametric representation formulas can be used in order to prevent time consuming computer experiments. More... »

PAGES

324-336

Book

TITLE

Analytical and Stochastic Modeling Techniques and Applications

ISBN

978-3-642-39407-2
978-3-642-39408-9

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-39408-9_23

DOI

http://dx.doi.org/10.1007/978-3-642-39408-9_23

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052446406


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Ulm", 
          "id": "https://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Institute of Stochastics, Ulm University, Helmholtzstr. 18, 89069\u00a0Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Neuh\u00e4user", 
        "givenName": "David", 
        "id": "sg:person.012336342133.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012336342133.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ulm", 
          "id": "https://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Institute of Stochastics, Ulm University, Helmholtzstr. 18, 89069\u00a0Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hirsch", 
        "givenName": "Christian", 
        "id": "sg:person.015752751047.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015752751047.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Orange (France)", 
          "id": "https://www.grid.ac/institutes/grid.89485.38", 
          "name": [
            "Orange Labs, 38-40 rue du General Leclerc, 92794\u00a0Issy-Moulineaux Cedex9, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gloaguen", 
        "givenName": "Catherine", 
        "id": "sg:person.0736175422.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736175422.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ulm", 
          "id": "https://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Institute of Stochastics, Ulm University, Helmholtzstr. 18, 89069\u00a0Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmidt", 
        "givenName": "Volker", 
        "id": "sg:person.01051347101.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051347101.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11134-012-9276-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001277440", 
          "https://doi.org/10.1007/s11134-012-9276-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-7787-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002520246", 
          "https://doi.org/10.1007/978-1-4419-7787-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-7787-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002520246", 
          "https://doi.org/10.1007/978-1-4419-7787-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12243-010-0218-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021025364", 
          "https://doi.org/10.1007/s12243-010-0218-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45995-2_42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048781642", 
          "https://doi.org/10.1007/3-540-45995-2_42"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1050491356", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-78859-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050491356", 
          "https://doi.org/10.1007/978-3-540-78859-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-78859-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050491356", 
          "https://doi.org/10.1007/978-3-540-78859-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1239/aap/1037990949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064440508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1239/aap/1293113145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064440968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5566/ias.v28.p155-163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072988773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/p842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098907953"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "We extend the Stochastic Subscriber Line Model by the introduction of shortest-path trees which are obtained by splitting up the segment system of the typical serving zone at its crossings and endings. Due to reasons in the complex field of cost and capacity estimation in telecommunication networks, it is desirable to gain knowledge about distributional properties of the branches of these trees. The present paper shows how to obtain parametric approximation formulas for the univariate density functions of the lengths of the two main branches in shortest-path trees. Besides, we derive a joint bivariate distribution for the lengths of these branches by means of copula functions, i.e., we give a parametric composition formula of the marginals. These approximative parametric representation formulas can be used in order to prevent time consuming computer experiments.", 
    "editor": [
      {
        "familyName": "Dudin", 
        "givenName": "Alexander", 
        "type": "Person"
      }, 
      {
        "familyName": "De Turck", 
        "givenName": "Koen", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-39408-9_23", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-39407-2", 
        "978-3-642-39408-9"
      ], 
      "name": "Analytical and Stochastic Modeling Techniques and Applications", 
      "type": "Book"
    }, 
    "name": "A Parametric Copula Approach for Modelling Shortest-Path Trees in Telecommunication Networks", 
    "pagination": "324-336", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-39408-9_23"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f9d19ad0ae044a78f3cab9e53fd133a292a17696a82314ca8f46628a9a40e9cf"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052446406"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-39408-9_23", 
      "https://app.dimensions.ai/details/publication/pub.1052446406"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T12:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000275.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-39408-9_23"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-39408-9_23'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-39408-9_23'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-39408-9_23'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-39408-9_23'


 

This table displays all metadata directly associated to this object as RDF triples.

128 TRIPLES      23 PREDICATES      37 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-39408-9_23 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N2cf8bb9901f0411bb22e13dd8f261e02
4 schema:citation sg:pub.10.1007/3-540-45995-2_42
5 sg:pub.10.1007/978-1-4419-7787-8
6 sg:pub.10.1007/978-3-540-78859-1
7 sg:pub.10.1007/s11134-012-9276-z
8 sg:pub.10.1007/s12243-010-0218-7
9 https://app.dimensions.ai/details/publication/pub.1050491356
10 https://doi.org/10.1142/p842
11 https://doi.org/10.1239/aap/1037990949
12 https://doi.org/10.1239/aap/1293113145
13 https://doi.org/10.5566/ias.v28.p155-163
14 schema:datePublished 2013
15 schema:datePublishedReg 2013-01-01
16 schema:description We extend the Stochastic Subscriber Line Model by the introduction of shortest-path trees which are obtained by splitting up the segment system of the typical serving zone at its crossings and endings. Due to reasons in the complex field of cost and capacity estimation in telecommunication networks, it is desirable to gain knowledge about distributional properties of the branches of these trees. The present paper shows how to obtain parametric approximation formulas for the univariate density functions of the lengths of the two main branches in shortest-path trees. Besides, we derive a joint bivariate distribution for the lengths of these branches by means of copula functions, i.e., we give a parametric composition formula of the marginals. These approximative parametric representation formulas can be used in order to prevent time consuming computer experiments.
17 schema:editor N4d9e8b58fae149e68806e408354ccfe3
18 schema:genre chapter
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N3aa41f1a7d13416aa8c672475b70b6c5
22 schema:name A Parametric Copula Approach for Modelling Shortest-Path Trees in Telecommunication Networks
23 schema:pagination 324-336
24 schema:productId N4fe97ba626be467f81ef60b1cf371c79
25 N63f7483dbb424da98027af68e6c81647
26 N76558d147c8844fbaee1e18c7144133f
27 schema:publisher Nc8705efc26ac4401ab141da73127958a
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052446406
29 https://doi.org/10.1007/978-3-642-39408-9_23
30 schema:sdDatePublished 2019-04-15T12:35
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N65b7e93a50ad48d8b5977e61513f76a6
33 schema:url http://link.springer.com/10.1007/978-3-642-39408-9_23
34 sgo:license sg:explorer/license/
35 sgo:sdDataset chapters
36 rdf:type schema:Chapter
37 N2cf8bb9901f0411bb22e13dd8f261e02 rdf:first sg:person.012336342133.11
38 rdf:rest N6cce046c399f46c0a3ea4f2345155eb2
39 N3aa41f1a7d13416aa8c672475b70b6c5 schema:isbn 978-3-642-39407-2
40 978-3-642-39408-9
41 schema:name Analytical and Stochastic Modeling Techniques and Applications
42 rdf:type schema:Book
43 N4d9e8b58fae149e68806e408354ccfe3 rdf:first N9ce78c0d0d5847fbbc77463e5b03fdb6
44 rdf:rest N80a5e60847be4749a0d52c30a55d0914
45 N4fe97ba626be467f81ef60b1cf371c79 schema:name readcube_id
46 schema:value f9d19ad0ae044a78f3cab9e53fd133a292a17696a82314ca8f46628a9a40e9cf
47 rdf:type schema:PropertyValue
48 N63f7483dbb424da98027af68e6c81647 schema:name dimensions_id
49 schema:value pub.1052446406
50 rdf:type schema:PropertyValue
51 N65b7e93a50ad48d8b5977e61513f76a6 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N6cce046c399f46c0a3ea4f2345155eb2 rdf:first sg:person.015752751047.99
54 rdf:rest Na12c9ce9a10845cc9bb72ffcb16a0a91
55 N76558d147c8844fbaee1e18c7144133f schema:name doi
56 schema:value 10.1007/978-3-642-39408-9_23
57 rdf:type schema:PropertyValue
58 N80a5e60847be4749a0d52c30a55d0914 rdf:first Nc23dd73351fe4d1f90374ec3db783488
59 rdf:rest rdf:nil
60 N9ce78c0d0d5847fbbc77463e5b03fdb6 schema:familyName Dudin
61 schema:givenName Alexander
62 rdf:type schema:Person
63 Na12c9ce9a10845cc9bb72ffcb16a0a91 rdf:first sg:person.0736175422.90
64 rdf:rest Ne3b8151127944f42b51ebbee23bf6eee
65 Nc23dd73351fe4d1f90374ec3db783488 schema:familyName De Turck
66 schema:givenName Koen
67 rdf:type schema:Person
68 Nc8705efc26ac4401ab141da73127958a schema:location Berlin, Heidelberg
69 schema:name Springer Berlin Heidelberg
70 rdf:type schema:Organisation
71 Ne3b8151127944f42b51ebbee23bf6eee rdf:first sg:person.01051347101.48
72 rdf:rest rdf:nil
73 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
74 schema:name Mathematical Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
77 schema:name Statistics
78 rdf:type schema:DefinedTerm
79 sg:person.01051347101.48 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
80 schema:familyName Schmidt
81 schema:givenName Volker
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051347101.48
83 rdf:type schema:Person
84 sg:person.012336342133.11 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
85 schema:familyName Neuhäuser
86 schema:givenName David
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012336342133.11
88 rdf:type schema:Person
89 sg:person.015752751047.99 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
90 schema:familyName Hirsch
91 schema:givenName Christian
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015752751047.99
93 rdf:type schema:Person
94 sg:person.0736175422.90 schema:affiliation https://www.grid.ac/institutes/grid.89485.38
95 schema:familyName Gloaguen
96 schema:givenName Catherine
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736175422.90
98 rdf:type schema:Person
99 sg:pub.10.1007/3-540-45995-2_42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048781642
100 https://doi.org/10.1007/3-540-45995-2_42
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/978-1-4419-7787-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002520246
103 https://doi.org/10.1007/978-1-4419-7787-8
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/978-3-540-78859-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050491356
106 https://doi.org/10.1007/978-3-540-78859-1
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s11134-012-9276-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1001277440
109 https://doi.org/10.1007/s11134-012-9276-z
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s12243-010-0218-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021025364
112 https://doi.org/10.1007/s12243-010-0218-7
113 rdf:type schema:CreativeWork
114 https://app.dimensions.ai/details/publication/pub.1050491356 schema:CreativeWork
115 https://doi.org/10.1142/p842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098907953
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1239/aap/1037990949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064440508
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1239/aap/1293113145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064440968
120 rdf:type schema:CreativeWork
121 https://doi.org/10.5566/ias.v28.p155-163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072988773
122 rdf:type schema:CreativeWork
123 https://www.grid.ac/institutes/grid.6582.9 schema:alternateName University of Ulm
124 schema:name Institute of Stochastics, Ulm University, Helmholtzstr. 18, 89069 Ulm, Germany
125 rdf:type schema:Organization
126 https://www.grid.ac/institutes/grid.89485.38 schema:alternateName Orange (France)
127 schema:name Orange Labs, 38-40 rue du General Leclerc, 92794 Issy-Moulineaux Cedex9, France
128 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...