Asynchronous Signal Passing for Tile Self-assembly: Fuel Efficient Computation and Efficient Assembly of Shapes View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2013

AUTHORS

Jennifer E. Padilla , Matthew J. Patitz , Raul Pena , Robert T. Schweller , Nadrian C. Seeman , Robert Sheline , Scott M. Summers , Xingsi Zhong

ABSTRACT

In this paper we demonstrate the power of a model of tile self-assembly based on active glues which can dynamically change state. We formulate the Signal-passing Tile Assembly Model (STAM), based on the model of Padilla, et al.[1] to be asynchronous, allowing any action of turning a glue on or off, attaching a new tile, or breaking apart an assembly to happen in any order. Within this highly generalized model we provide three new solutions to tile self-assembly problems that have been addressed within the abstract Tile Assembly Model and its variants, showing that signal passing tiles allow for substantial improvement across multiple complexity metrics. Our first result utilizes a recursive assembly process to achieve tile-type efficient assembly of linear structures, using provably fewer tile types than what is possible in standard tile assembly models. Our second system of signal-passing tiles simulates any Turing machine with high fuel efficiency by using only a constant number of tiles per computation step. Our third system assembles the discrete Sierpinski triangle, demonstrating that this pattern can be strictly self-assembled within the STAM. This result is of particular interest in that it is known that this pattern cannot self-assemble within a number of well studied tile self-assembly models. Notably, all of our constructions are at temperature 1, further demonstrating that signal-passing confers the power to bypass many restrictions found in standard tile assembly models. More... »

PAGES

174-185

Book

TITLE

Unconventional Computation and Natural Computation

ISBN

978-3-642-39073-9
978-3-642-39074-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-39074-6_17

DOI

http://dx.doi.org/10.1007/978-3-642-39074-6_17

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031184247


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Macromolecular and Materials Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "New York University", 
          "id": "https://www.grid.ac/institutes/grid.137628.9", 
          "name": [
            "Department of Chemistry, New York University, New York, NY\u00a010003, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Padilla", 
        "givenName": "Jennifer E.", 
        "id": "sg:person.0625226605.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625226605.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Arkansas at Fayetteville", 
          "id": "https://www.grid.ac/institutes/grid.411017.2", 
          "name": [
            "Department of Computer Science and Computer Engineering, University of Arkansas, Fayetteville, AR\u00a072701, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Patitz", 
        "givenName": "Matthew J.", 
        "id": "sg:person.07742035263.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07742035263.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas Rio Grande Valley", 
          "id": "https://www.grid.ac/institutes/grid.449717.8", 
          "name": [
            "Department of Computer Science, University of Texas \u2013 Pan American, Edinburg, TX\u00a078539, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pena", 
        "givenName": "Raul", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas Rio Grande Valley", 
          "id": "https://www.grid.ac/institutes/grid.449717.8", 
          "name": [
            "Department of Computer Science, University of Texas \u2013 Pan American, Edinburg, TX\u00a078539, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schweller", 
        "givenName": "Robert T.", 
        "id": "sg:person.014737303547.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014737303547.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "New York University", 
          "id": "https://www.grid.ac/institutes/grid.137628.9", 
          "name": [
            "Department of Chemistry, New York University, New York, NY\u00a010003, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seeman", 
        "givenName": "Nadrian C.", 
        "id": "sg:person.01155412761.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155412761.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas Rio Grande Valley", 
          "id": "https://www.grid.ac/institutes/grid.449717.8", 
          "name": [
            "Department of Computer Science, University of Texas \u2013 Pan American, Edinburg, TX\u00a078539, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sheline", 
        "givenName": "Robert", 
        "id": "sg:person.010424553747.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010424553747.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013Platteville", 
          "id": "https://www.grid.ac/institutes/grid.267476.6", 
          "name": [
            "Department of Computer Science and Software Engineering, University of Wisconsin \u2013 Platteville, Platteville, WI\u00a053818, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Summers", 
        "givenName": "Scott M.", 
        "id": "sg:person.07454723634.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07454723634.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas Rio Grande Valley", 
          "id": "https://www.grid.ac/institutes/grid.449717.8", 
          "name": [
            "Department of Computer Science, University of Texas \u2013 Pan American, Edinburg, TX\u00a078539, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhong", 
        "givenName": "Xingsi", 
        "id": "sg:person.011207013463.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011207013463.95"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11047-010-9218-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001033687", 
          "https://doi.org/10.1007/s11047-010-9218-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0407024101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001075437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0020424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004978828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tcs.2010.08.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007181091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tcs.2008.12.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008296719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1132493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009826852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/28998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015431161", 
          "https://doi.org/10.1038/28998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/28998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015431161", 
          "https://doi.org/10.1038/28998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/j.1538-7305.1961.tb03975.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017716034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchem.957", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022735714", 
          "https://doi.org/10.1038/nchem.957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.201005911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025481432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.201005911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025481432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11047-008-9073-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028186068", 
          "https://doi.org/10.1007/s11047-008-9073-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028635122", 
          "https://doi.org/10.1038/nature04586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028635122", 
          "https://doi.org/10.1038/nature04586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028635122", 
          "https://doi.org/10.1038/nature04586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35020524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030103352", 
          "https://doi.org/10.1038/35020524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35020524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030103352", 
          "https://doi.org/10.1038/35020524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1170336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036120169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-70575-8_31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036432657", 
          "https://doi.org/10.1007/978-3-540-70575-8_31"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-77962-9_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038394236", 
          "https://doi.org/10.1007/978-3-540-77962-9_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-77962-9_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038394236", 
          "https://doi.org/10.1007/978-3-540-77962-9_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041585382", 
          "https://doi.org/10.1038/nature06451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043300673", 
          "https://doi.org/10.1038/nature09012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2010.0729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045013552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11047-011-9268-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045289782", 
          "https://doi.org/10.1007/s11047-011-9268-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-18305-8_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045543776", 
          "https://doi.org/10.1007/978-3-642-18305-8_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-18305-8_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045543776", 
          "https://doi.org/10.1007/978-3-642-18305-8_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tcs.2008.09.062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046617264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046835685", 
          "https://doi.org/10.1038/nnano.2010.284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/509907.509913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050576543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11047-009-9147-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052094533", 
          "https://doi.org/10.1007/s11047-009-9147-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11047-009-9147-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052094533", 
          "https://doi.org/10.1007/s11047-009-9147-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0097539704445202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062879549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0097539704446712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062879582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611973082.45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088801365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611973105.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088801584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mmb.2006.251471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095817970"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "In this paper we demonstrate the power of a model of tile self-assembly based on active glues which can dynamically change state. We formulate the Signal-passing Tile Assembly Model (STAM), based on the model of Padilla, et al.[1] to be asynchronous, allowing any action of turning a glue on or off, attaching a new tile, or breaking apart an assembly to happen in any order. Within this highly generalized model we provide three new solutions to tile self-assembly problems that have been addressed within the abstract Tile Assembly Model and its variants, showing that signal passing tiles allow for substantial improvement across multiple complexity metrics. Our first result utilizes a recursive assembly process to achieve tile-type efficient assembly of linear structures, using provably fewer tile types than what is possible in standard tile assembly models. Our second system of signal-passing tiles simulates any Turing machine with high fuel efficiency by using only a constant number of tiles per computation step. Our third system assembles the discrete Sierpinski triangle, demonstrating that this pattern can be strictly self-assembled within the STAM. This result is of particular interest in that it is known that this pattern cannot self-assemble within a number of well studied tile self-assembly models. Notably, all of our constructions are at temperature 1, further demonstrating that signal-passing confers the power to bypass many restrictions found in standard tile assembly models.", 
    "editor": [
      {
        "familyName": "Mauri", 
        "givenName": "Giancarlo", 
        "type": "Person"
      }, 
      {
        "familyName": "Dennunzio", 
        "givenName": "Alberto", 
        "type": "Person"
      }, 
      {
        "familyName": "Manzoni", 
        "givenName": "Luca", 
        "type": "Person"
      }, 
      {
        "familyName": "Porreca", 
        "givenName": "Antonio E.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-39074-6_17", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-39073-9", 
        "978-3-642-39074-6"
      ], 
      "name": "Unconventional Computation and Natural Computation", 
      "type": "Book"
    }, 
    "name": "Asynchronous Signal Passing for Tile Self-assembly: Fuel Efficient Computation and Efficient Assembly of Shapes", 
    "pagination": "174-185", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-39074-6_17"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "948f278e4a29c6e639dbae31804bfc740c515964494499d0d7371d6a3ba27651"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031184247"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-39074-6_17", 
      "https://app.dimensions.ai/details/publication/pub.1031184247"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T10:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000262.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-39074-6_17"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-39074-6_17'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-39074-6_17'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-39074-6_17'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-39074-6_17'


 

This table displays all metadata directly associated to this object as RDF triples.

241 TRIPLES      23 PREDICATES      57 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-39074-6_17 schema:about anzsrc-for:03
2 anzsrc-for:0303
3 schema:author Nc7644d3c4a794b299affee73326cee6c
4 schema:citation sg:pub.10.1007/978-3-540-70575-8_31
5 sg:pub.10.1007/978-3-540-77962-9_2
6 sg:pub.10.1007/978-3-642-18305-8_4
7 sg:pub.10.1007/s11047-008-9073-0
8 sg:pub.10.1007/s11047-009-9147-7
9 sg:pub.10.1007/s11047-010-9218-9
10 sg:pub.10.1007/s11047-011-9268-7
11 sg:pub.10.1038/28998
12 sg:pub.10.1038/35020524
13 sg:pub.10.1038/nature04586
14 sg:pub.10.1038/nature06451
15 sg:pub.10.1038/nature09012
16 sg:pub.10.1038/nchem.957
17 sg:pub.10.1038/nnano.2010.284
18 https://doi.org/10.1002/anie.201005911
19 https://doi.org/10.1002/j.1538-7305.1961.tb03975.x
20 https://doi.org/10.1016/j.tcs.2008.09.062
21 https://doi.org/10.1016/j.tcs.2008.12.011
22 https://doi.org/10.1016/j.tcs.2010.08.023
23 https://doi.org/10.1073/pnas.0407024101
24 https://doi.org/10.1098/rsif.2010.0729
25 https://doi.org/10.1109/mmb.2006.251471
26 https://doi.org/10.1126/science.1132493
27 https://doi.org/10.1126/science.1170336
28 https://doi.org/10.1137/1.9781611973082.45
29 https://doi.org/10.1137/1.9781611973105.109
30 https://doi.org/10.1137/s0097539704445202
31 https://doi.org/10.1137/s0097539704446712
32 https://doi.org/10.1145/509907.509913
33 https://doi.org/10.1371/journal.pbio.0020424
34 schema:datePublished 2013
35 schema:datePublishedReg 2013-01-01
36 schema:description In this paper we demonstrate the power of a model of tile self-assembly based on active glues which can dynamically change state. We formulate the Signal-passing Tile Assembly Model (STAM), based on the model of Padilla, et al.[1] to be asynchronous, allowing any action of turning a glue on or off, attaching a new tile, or breaking apart an assembly to happen in any order. Within this highly generalized model we provide three new solutions to tile self-assembly problems that have been addressed within the abstract Tile Assembly Model and its variants, showing that signal passing tiles allow for substantial improvement across multiple complexity metrics. Our first result utilizes a recursive assembly process to achieve tile-type efficient assembly of linear structures, using provably fewer tile types than what is possible in standard tile assembly models. Our second system of signal-passing tiles simulates any Turing machine with high fuel efficiency by using only a constant number of tiles per computation step. Our third system assembles the discrete Sierpinski triangle, demonstrating that this pattern can be strictly self-assembled within the STAM. This result is of particular interest in that it is known that this pattern cannot self-assemble within a number of well studied tile self-assembly models. Notably, all of our constructions are at temperature 1, further demonstrating that signal-passing confers the power to bypass many restrictions found in standard tile assembly models.
37 schema:editor N317626fff82b4971a743d620b207b7f4
38 schema:genre chapter
39 schema:inLanguage en
40 schema:isAccessibleForFree true
41 schema:isPartOf N17249f428f9341d3bbc205634bb3fddf
42 schema:name Asynchronous Signal Passing for Tile Self-assembly: Fuel Efficient Computation and Efficient Assembly of Shapes
43 schema:pagination 174-185
44 schema:productId N472369a9a3884086a88683d0edeb2820
45 N97c607d05efb4f7c85b54123e3ccac45
46 Nfbec046137b24c4fb51397c2dc70ceef
47 schema:publisher Na905cab17fdc42339994e12c2c7f6947
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031184247
49 https://doi.org/10.1007/978-3-642-39074-6_17
50 schema:sdDatePublished 2019-04-15T10:35
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N65155ea6515e44bf8e9fdb7bc4966442
53 schema:url http://link.springer.com/10.1007/978-3-642-39074-6_17
54 sgo:license sg:explorer/license/
55 sgo:sdDataset chapters
56 rdf:type schema:Chapter
57 N0091720bf2a844358e14632bd92f7a67 rdf:first N146191df3277443bb1499d239cb3f43f
58 rdf:rest N091bb97a1c814c2eb0c3a52450ad3fac
59 N091bb97a1c814c2eb0c3a52450ad3fac rdf:first N741671ab7631437fb1813b2640075197
60 rdf:rest rdf:nil
61 N146191df3277443bb1499d239cb3f43f schema:familyName Manzoni
62 schema:givenName Luca
63 rdf:type schema:Person
64 N17249f428f9341d3bbc205634bb3fddf schema:isbn 978-3-642-39073-9
65 978-3-642-39074-6
66 schema:name Unconventional Computation and Natural Computation
67 rdf:type schema:Book
68 N20f595e223384aba8e3832ab02506602 rdf:first sg:person.07454723634.60
69 rdf:rest Nd5dac1942bae4a6c9e19c507d4daed6d
70 N24c8e854d48b4f1990c4068fb6ae1305 schema:familyName Mauri
71 schema:givenName Giancarlo
72 rdf:type schema:Person
73 N317626fff82b4971a743d620b207b7f4 rdf:first N24c8e854d48b4f1990c4068fb6ae1305
74 rdf:rest Nc958ec45f1da4571af42ac0309c89d88
75 N3485f5e1a5c14ef394d7ca8b9e9f53bd rdf:first sg:person.014737303547.10
76 rdf:rest N769ebfd3076c4dc79549b3cb40b46524
77 N472369a9a3884086a88683d0edeb2820 schema:name doi
78 schema:value 10.1007/978-3-642-39074-6_17
79 rdf:type schema:PropertyValue
80 N5096a92d5b22459b9aab1d232fdb5c89 schema:affiliation https://www.grid.ac/institutes/grid.449717.8
81 schema:familyName Pena
82 schema:givenName Raul
83 rdf:type schema:Person
84 N65155ea6515e44bf8e9fdb7bc4966442 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 N741671ab7631437fb1813b2640075197 schema:familyName Porreca
87 schema:givenName Antonio E.
88 rdf:type schema:Person
89 N769ebfd3076c4dc79549b3cb40b46524 rdf:first sg:person.01155412761.86
90 rdf:rest Nd61d704c43ea443197c75216630d169b
91 N97c607d05efb4f7c85b54123e3ccac45 schema:name readcube_id
92 schema:value 948f278e4a29c6e639dbae31804bfc740c515964494499d0d7371d6a3ba27651
93 rdf:type schema:PropertyValue
94 Na00da730e4ba46edbbea61c7635804a0 schema:familyName Dennunzio
95 schema:givenName Alberto
96 rdf:type schema:Person
97 Na905cab17fdc42339994e12c2c7f6947 schema:location Berlin, Heidelberg
98 schema:name Springer Berlin Heidelberg
99 rdf:type schema:Organisation
100 Nc7644d3c4a794b299affee73326cee6c rdf:first sg:person.0625226605.12
101 rdf:rest Nd30aee4fd673467d857349a29a11266a
102 Nc958ec45f1da4571af42ac0309c89d88 rdf:first Na00da730e4ba46edbbea61c7635804a0
103 rdf:rest N0091720bf2a844358e14632bd92f7a67
104 Nd30aee4fd673467d857349a29a11266a rdf:first sg:person.07742035263.01
105 rdf:rest Ndfdf5b1590bf4c81893763b150f759ee
106 Nd5dac1942bae4a6c9e19c507d4daed6d rdf:first sg:person.011207013463.95
107 rdf:rest rdf:nil
108 Nd61d704c43ea443197c75216630d169b rdf:first sg:person.010424553747.21
109 rdf:rest N20f595e223384aba8e3832ab02506602
110 Ndfdf5b1590bf4c81893763b150f759ee rdf:first N5096a92d5b22459b9aab1d232fdb5c89
111 rdf:rest N3485f5e1a5c14ef394d7ca8b9e9f53bd
112 Nfbec046137b24c4fb51397c2dc70ceef schema:name dimensions_id
113 schema:value pub.1031184247
114 rdf:type schema:PropertyValue
115 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
116 schema:name Chemical Sciences
117 rdf:type schema:DefinedTerm
118 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
119 schema:name Macromolecular and Materials Chemistry
120 rdf:type schema:DefinedTerm
121 sg:person.010424553747.21 schema:affiliation https://www.grid.ac/institutes/grid.449717.8
122 schema:familyName Sheline
123 schema:givenName Robert
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010424553747.21
125 rdf:type schema:Person
126 sg:person.011207013463.95 schema:affiliation https://www.grid.ac/institutes/grid.449717.8
127 schema:familyName Zhong
128 schema:givenName Xingsi
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011207013463.95
130 rdf:type schema:Person
131 sg:person.01155412761.86 schema:affiliation https://www.grid.ac/institutes/grid.137628.9
132 schema:familyName Seeman
133 schema:givenName Nadrian C.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155412761.86
135 rdf:type schema:Person
136 sg:person.014737303547.10 schema:affiliation https://www.grid.ac/institutes/grid.449717.8
137 schema:familyName Schweller
138 schema:givenName Robert T.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014737303547.10
140 rdf:type schema:Person
141 sg:person.0625226605.12 schema:affiliation https://www.grid.ac/institutes/grid.137628.9
142 schema:familyName Padilla
143 schema:givenName Jennifer E.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625226605.12
145 rdf:type schema:Person
146 sg:person.07454723634.60 schema:affiliation https://www.grid.ac/institutes/grid.267476.6
147 schema:familyName Summers
148 schema:givenName Scott M.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07454723634.60
150 rdf:type schema:Person
151 sg:person.07742035263.01 schema:affiliation https://www.grid.ac/institutes/grid.411017.2
152 schema:familyName Patitz
153 schema:givenName Matthew J.
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07742035263.01
155 rdf:type schema:Person
156 sg:pub.10.1007/978-3-540-70575-8_31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036432657
157 https://doi.org/10.1007/978-3-540-70575-8_31
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/978-3-540-77962-9_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038394236
160 https://doi.org/10.1007/978-3-540-77962-9_2
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/978-3-642-18305-8_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045543776
163 https://doi.org/10.1007/978-3-642-18305-8_4
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s11047-008-9073-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028186068
166 https://doi.org/10.1007/s11047-008-9073-0
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s11047-009-9147-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052094533
169 https://doi.org/10.1007/s11047-009-9147-7
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s11047-010-9218-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001033687
172 https://doi.org/10.1007/s11047-010-9218-9
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/s11047-011-9268-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045289782
175 https://doi.org/10.1007/s11047-011-9268-7
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/28998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015431161
178 https://doi.org/10.1038/28998
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/35020524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030103352
181 https://doi.org/10.1038/35020524
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/nature04586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028635122
184 https://doi.org/10.1038/nature04586
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/nature06451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041585382
187 https://doi.org/10.1038/nature06451
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/nature09012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043300673
190 https://doi.org/10.1038/nature09012
191 rdf:type schema:CreativeWork
192 sg:pub.10.1038/nchem.957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022735714
193 https://doi.org/10.1038/nchem.957
194 rdf:type schema:CreativeWork
195 sg:pub.10.1038/nnano.2010.284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046835685
196 https://doi.org/10.1038/nnano.2010.284
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1002/anie.201005911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025481432
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1002/j.1538-7305.1961.tb03975.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017716034
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.tcs.2008.09.062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046617264
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.tcs.2008.12.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008296719
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.tcs.2010.08.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007181091
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1073/pnas.0407024101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001075437
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1098/rsif.2010.0729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045013552
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1109/mmb.2006.251471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095817970
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1126/science.1132493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009826852
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1126/science.1170336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036120169
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1137/1.9781611973082.45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088801365
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1137/1.9781611973105.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088801584
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1137/s0097539704445202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062879549
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1137/s0097539704446712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062879582
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1145/509907.509913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050576543
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1371/journal.pbio.0020424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004978828
229 rdf:type schema:CreativeWork
230 https://www.grid.ac/institutes/grid.137628.9 schema:alternateName New York University
231 schema:name Department of Chemistry, New York University, New York, NY 10003, USA
232 rdf:type schema:Organization
233 https://www.grid.ac/institutes/grid.267476.6 schema:alternateName University of Wisconsin–Platteville
234 schema:name Department of Computer Science and Software Engineering, University of Wisconsin – Platteville, Platteville, WI 53818, USA
235 rdf:type schema:Organization
236 https://www.grid.ac/institutes/grid.411017.2 schema:alternateName University of Arkansas at Fayetteville
237 schema:name Department of Computer Science and Computer Engineering, University of Arkansas, Fayetteville, AR 72701, USA
238 rdf:type schema:Organization
239 https://www.grid.ac/institutes/grid.449717.8 schema:alternateName The University of Texas Rio Grande Valley
240 schema:name Department of Computer Science, University of Texas – Pan American, Edinburg, TX 78539, USA
241 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...