Using Random Graphs in Population Genomics View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013

AUTHORS

Laxmi Parida

ABSTRACT

I shall discuss the application of algorithmic and combinatorial tools in the area of population genomics, which has not been the traditional stomping ground for algorithmicists.The modeling of the evolutionary dynamics of evolving populations as random graphs offers a new methodology for analysis. This exploration begins as a quest for understanding the reconstructability of common evolutionary history of populations. It provides new insights including a purely topological (or graph theoretic definition) of traditional population genomic entity like the GMRCA (Grand Most Common Ancestor) of individuals under mutations as well as recombinations. Apart from giving interesting characterizations of another important structure called the ARG (Ancestral Recombinations Graph), it provides the basis for identifying a mathematical minimal nonredundant structure in the ARG and for adapting very naturally the coalescence theory (a wellstudied notion in population genetics) in designing ARG sampling algorithms. This connection also opens the door for many interesting questions ranging from human migration paths, to genetic diversity study in plant (cacao) cultivars. More... »

PAGES

340-341

Book

TITLE

The Nature of Computation. Logic, Algorithms, Applications

ISBN

978-3-642-39052-4
978-3-642-39053-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-39053-1_40

DOI

http://dx.doi.org/10.1007/978-3-642-39053-1_40

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021893490


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Computational Genomics Group, IBM T.J. Watson Research Center, U.S.A.", 
          "id": "http://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "Computational Genomics Group, IBM T.J. Watson Research Center, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Parida", 
        "givenName": "Laxmi", 
        "id": "sg:person.01336557015.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336557015.68"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "I shall discuss the application of algorithmic and combinatorial tools in the area of population genomics, which has not been the traditional stomping ground for algorithmicists.The modeling of the evolutionary dynamics of evolving populations as random graphs offers a new methodology for analysis. This exploration begins as a quest for understanding the reconstructability of common evolutionary history of populations. It provides new insights including a purely topological (or graph theoretic definition) of traditional population genomic entity like the GMRCA (Grand Most Common Ancestor) of individuals under mutations as well as recombinations. Apart from giving interesting characterizations of another important structure called the ARG (Ancestral Recombinations Graph), it provides the basis for identifying a mathematical minimal nonredundant structure in the ARG and for adapting very naturally the coalescence theory (a wellstudied notion in population genetics) in designing ARG sampling algorithms. This connection also opens the door for many interesting questions ranging from human migration paths, to genetic diversity study in plant (cacao) cultivars.", 
    "editor": [
      {
        "familyName": "Bonizzoni", 
        "givenName": "Paola", 
        "type": "Person"
      }, 
      {
        "familyName": "Brattka", 
        "givenName": "Vasco", 
        "type": "Person"
      }, 
      {
        "familyName": "L\u00f6we", 
        "givenName": "Benedikt", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-39053-1_40", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-39052-4", 
        "978-3-642-39053-1"
      ], 
      "name": "The Nature of Computation. Logic, Algorithms, Applications", 
      "type": "Book"
    }, 
    "keywords": [
      "random graphs", 
      "population genomics", 
      "common evolutionary history", 
      "genetic diversity studies", 
      "evolutionary history", 
      "combinatorial tools", 
      "diversity studies", 
      "evolutionary dynamics", 
      "plant cultivars", 
      "genomic entities", 
      "coalescence theory", 
      "nonredundant structures", 
      "interesting characterization", 
      "genomics", 
      "new insights", 
      "graph", 
      "Arg", 
      "new methodology", 
      "interesting questions", 
      "mutations", 
      "cultivars", 
      "reconstructability", 
      "recombination", 
      "population", 
      "theory", 
      "algorithm", 
      "dynamics", 
      "modeling", 
      "insights", 
      "structure", 
      "characterization", 
      "path", 
      "applications", 
      "methodology", 
      "important structures", 
      "connection", 
      "basis", 
      "individuals", 
      "migration path", 
      "tool", 
      "analysis", 
      "study", 
      "area", 
      "ground", 
      "exploration", 
      "history", 
      "questions", 
      "quest", 
      "door", 
      "entities"
    ], 
    "name": "Using Random Graphs in Population Genomics", 
    "pagination": "340-341", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021893490"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-39053-1_40"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-39053-1_40", 
      "https://app.dimensions.ai/details/publication/pub.1021893490"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-10-01T06:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/chapter/chapter_200.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-39053-1_40"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-39053-1_40'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-39053-1_40'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-39053-1_40'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-39053-1_40'


 

This table displays all metadata directly associated to this object as RDF triples.

119 TRIPLES      22 PREDICATES      75 URIs      68 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-39053-1_40 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N3d0982dc557d441c8d1e0ce1bab5b607
4 schema:datePublished 2013
5 schema:datePublishedReg 2013-01-01
6 schema:description I shall discuss the application of algorithmic and combinatorial tools in the area of population genomics, which has not been the traditional stomping ground for algorithmicists.The modeling of the evolutionary dynamics of evolving populations as random graphs offers a new methodology for analysis. This exploration begins as a quest for understanding the reconstructability of common evolutionary history of populations. It provides new insights including a purely topological (or graph theoretic definition) of traditional population genomic entity like the GMRCA (Grand Most Common Ancestor) of individuals under mutations as well as recombinations. Apart from giving interesting characterizations of another important structure called the ARG (Ancestral Recombinations Graph), it provides the basis for identifying a mathematical minimal nonredundant structure in the ARG and for adapting very naturally the coalescence theory (a wellstudied notion in population genetics) in designing ARG sampling algorithms. This connection also opens the door for many interesting questions ranging from human migration paths, to genetic diversity study in plant (cacao) cultivars.
7 schema:editor N027abf6a67ab48b1bb8c96f821aaba3d
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N58ef4fb9a7064b73aac792cf6d63a852
11 schema:keywords Arg
12 algorithm
13 analysis
14 applications
15 area
16 basis
17 characterization
18 coalescence theory
19 combinatorial tools
20 common evolutionary history
21 connection
22 cultivars
23 diversity studies
24 door
25 dynamics
26 entities
27 evolutionary dynamics
28 evolutionary history
29 exploration
30 genetic diversity studies
31 genomic entities
32 genomics
33 graph
34 ground
35 history
36 important structures
37 individuals
38 insights
39 interesting characterization
40 interesting questions
41 methodology
42 migration path
43 modeling
44 mutations
45 new insights
46 new methodology
47 nonredundant structures
48 path
49 plant cultivars
50 population
51 population genomics
52 quest
53 questions
54 random graphs
55 recombination
56 reconstructability
57 structure
58 study
59 theory
60 tool
61 schema:name Using Random Graphs in Population Genomics
62 schema:pagination 340-341
63 schema:productId N3a49df1a96494ef898a4cb8a2585c4e0
64 N6203f72ec6e744e8b950d465b137c37f
65 schema:publisher N7e485175623b480b84dc25c646071b74
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021893490
67 https://doi.org/10.1007/978-3-642-39053-1_40
68 schema:sdDatePublished 2022-10-01T06:53
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher Na29279e382234ebe8bff01b8e11d5de7
71 schema:url https://doi.org/10.1007/978-3-642-39053-1_40
72 sgo:license sg:explorer/license/
73 sgo:sdDataset chapters
74 rdf:type schema:Chapter
75 N027abf6a67ab48b1bb8c96f821aaba3d rdf:first N09b8f5bcc004419baa33c069c60455b2
76 rdf:rest N8850922c608a45fdab1b80e424291bc0
77 N08b9399ce43d43b99daef72fe66b4636 schema:familyName Löwe
78 schema:givenName Benedikt
79 rdf:type schema:Person
80 N09b8f5bcc004419baa33c069c60455b2 schema:familyName Bonizzoni
81 schema:givenName Paola
82 rdf:type schema:Person
83 N27e8848553624473aadb7bee3215595d schema:familyName Brattka
84 schema:givenName Vasco
85 rdf:type schema:Person
86 N3a49df1a96494ef898a4cb8a2585c4e0 schema:name dimensions_id
87 schema:value pub.1021893490
88 rdf:type schema:PropertyValue
89 N3d0982dc557d441c8d1e0ce1bab5b607 rdf:first sg:person.01336557015.68
90 rdf:rest rdf:nil
91 N58ef4fb9a7064b73aac792cf6d63a852 schema:isbn 978-3-642-39052-4
92 978-3-642-39053-1
93 schema:name The Nature of Computation. Logic, Algorithms, Applications
94 rdf:type schema:Book
95 N6203f72ec6e744e8b950d465b137c37f schema:name doi
96 schema:value 10.1007/978-3-642-39053-1_40
97 rdf:type schema:PropertyValue
98 N72a206cc5ed34779b4acb11445dcb025 rdf:first N08b9399ce43d43b99daef72fe66b4636
99 rdf:rest rdf:nil
100 N7e485175623b480b84dc25c646071b74 schema:name Springer Nature
101 rdf:type schema:Organisation
102 N8850922c608a45fdab1b80e424291bc0 rdf:first N27e8848553624473aadb7bee3215595d
103 rdf:rest N72a206cc5ed34779b4acb11445dcb025
104 Na29279e382234ebe8bff01b8e11d5de7 schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
107 schema:name Biological Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
110 schema:name Genetics
111 rdf:type schema:DefinedTerm
112 sg:person.01336557015.68 schema:affiliation grid-institutes:grid.481554.9
113 schema:familyName Parida
114 schema:givenName Laxmi
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336557015.68
116 rdf:type schema:Person
117 grid-institutes:grid.481554.9 schema:alternateName Computational Genomics Group, IBM T.J. Watson Research Center, U.S.A.
118 schema:name Computational Genomics Group, IBM T.J. Watson Research Center, U.S.A.
119 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...