Ontology type: schema:Chapter Open Access: True
2013
AUTHORS ABSTRACTWe present a simple linear-time algorithm constructing a context-free grammar of size \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{O}(g \log (N/g))$\end{document} for the input string of size N, where g the size of the optimal grammar generating this string. The algorithm works for arbitrary size alphabets, but the running time is linear assuming that the alphabet Σ of the input string is a subset of {1,…, Nc } for some constant c. Algorithms with such an approximation guarantees and running time are known, the novelty of this paper is the particular simplicity of the algorithm as well as the analysis of the algorithm, which uses a general technique of recompression recently introduced by the author. Furthermore, contrary to the previous results, this work does not use the LZ representation of the input string in the construction, nor in the analysis. More... »
PAGES165-176
Combinatorial Pattern Matching
ISBN
978-3-642-38904-7
978-3-642-38905-4
http://scigraph.springernature.com/pub.10.1007/978-3-642-38905-4_17
DOIhttp://dx.doi.org/10.1007/978-3-642-38905-4_17
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1022417385
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Computation Theory and Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute of Computer Science, University of Wroc\u0142aw, ul. Joliot-Curie\u00a015, 50-383, Wroc\u0142aw, Poland",
"id": "http://www.grid.ac/institutes/grid.8505.8",
"name": [
"Max Planck Institute f\u00fcr Informatik, Campus E1 4, DE-66123, Saarbr\u00fccken, Germany",
"Institute of Computer Science, University of Wroc\u0142aw, ul. Joliot-Curie\u00a015, 50-383, Wroc\u0142aw, Poland"
],
"type": "Organization"
},
"familyName": "Je\u017c",
"givenName": "Artur",
"id": "sg:person.015252371751.76",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015252371751.76"
],
"type": "Person"
}
],
"datePublished": "2013",
"datePublishedReg": "2013-01-01",
"description": "We present a simple linear-time algorithm constructing a\u00a0context-free grammar of size \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal{O}(g \\log (N/g))$\\end{document} for the input string of size N, where g the size of the optimal grammar generating this string. The algorithm works for arbitrary size alphabets, but the running time is linear assuming that the alphabet \u03a3 of the input string is a subset of {1,\u2026, Nc } for some constant c. Algorithms with such an approximation guarantees and running time are known, the novelty of this paper is the particular simplicity of the algorithm as well as the analysis of the algorithm, which uses a general technique of recompression recently introduced by the author. Furthermore, contrary to the previous results, this work does not use the LZ representation of the input string in the construction, nor in the analysis.",
"editor": [
{
"familyName": "Fischer",
"givenName": "Johannes",
"type": "Person"
},
{
"familyName": "Sanders",
"givenName": "Peter",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-38905-4_17",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-642-38904-7",
"978-3-642-38905-4"
],
"name": "Combinatorial Pattern Matching",
"type": "Book"
},
"keywords": [
"simple linear time algorithm",
"linear time algorithm",
"particular simplicity",
"size n",
"general technique",
"running time",
"approximation",
"size alphabet",
"arbitrary size alphabets",
"algorithm",
"strings",
"input string",
"previous results",
"alphabet \u03a3",
"context-free grammars",
"representation",
"optimal grammar",
"simplicity",
"alphabet",
"novelty",
"construction",
"size",
"technique",
"analysis",
"time",
"subset",
"work",
"results",
"NC",
"authors",
"recompression",
"compression",
"grammar",
"paper"
],
"name": "Approximation of Grammar-Based Compression via Recompression",
"pagination": "165-176",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1022417385"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-38905-4_17"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-38905-4_17",
"https://app.dimensions.ai/details/publication/pub.1022417385"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:45",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_31.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-642-38905-4_17"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-38905-4_17'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-38905-4_17'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-38905-4_17'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-38905-4_17'
This table displays all metadata directly associated to this object as RDF triples.
100 TRIPLES
23 PREDICATES
60 URIs
53 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-642-38905-4_17 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0802 |
3 | ″ | schema:author | N2ad737f6029d4ad3b17fd1c8432654b1 |
4 | ″ | schema:datePublished | 2013 |
5 | ″ | schema:datePublishedReg | 2013-01-01 |
6 | ″ | schema:description | We present a simple linear-time algorithm constructing a context-free grammar of size \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{O}(g \log (N/g))$\end{document} for the input string of size N, where g the size of the optimal grammar generating this string. The algorithm works for arbitrary size alphabets, but the running time is linear assuming that the alphabet Σ of the input string is a subset of {1,…, Nc } for some constant c. Algorithms with such an approximation guarantees and running time are known, the novelty of this paper is the particular simplicity of the algorithm as well as the analysis of the algorithm, which uses a general technique of recompression recently introduced by the author. Furthermore, contrary to the previous results, this work does not use the LZ representation of the input string in the construction, nor in the analysis. |
7 | ″ | schema:editor | N7316100587b149d9b30ce9ca04b0905f |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | true |
11 | ″ | schema:isPartOf | N9cd9a532527d48fd9e9da17ffaadbe73 |
12 | ″ | schema:keywords | NC |
13 | ″ | ″ | algorithm |
14 | ″ | ″ | alphabet |
15 | ″ | ″ | alphabet Σ |
16 | ″ | ″ | analysis |
17 | ″ | ″ | approximation |
18 | ″ | ″ | arbitrary size alphabets |
19 | ″ | ″ | authors |
20 | ″ | ″ | compression |
21 | ″ | ″ | construction |
22 | ″ | ″ | context-free grammars |
23 | ″ | ″ | general technique |
24 | ″ | ″ | grammar |
25 | ″ | ″ | input string |
26 | ″ | ″ | linear time algorithm |
27 | ″ | ″ | novelty |
28 | ″ | ″ | optimal grammar |
29 | ″ | ″ | paper |
30 | ″ | ″ | particular simplicity |
31 | ″ | ″ | previous results |
32 | ″ | ″ | recompression |
33 | ″ | ″ | representation |
34 | ″ | ″ | results |
35 | ″ | ″ | running time |
36 | ″ | ″ | simple linear time algorithm |
37 | ″ | ″ | simplicity |
38 | ″ | ″ | size |
39 | ″ | ″ | size alphabet |
40 | ″ | ″ | size n |
41 | ″ | ″ | strings |
42 | ″ | ″ | subset |
43 | ″ | ″ | technique |
44 | ″ | ″ | time |
45 | ″ | ″ | work |
46 | ″ | schema:name | Approximation of Grammar-Based Compression via Recompression |
47 | ″ | schema:pagination | 165-176 |
48 | ″ | schema:productId | N5a35f132ce214a7dbc9fd0a1880b24c0 |
49 | ″ | ″ | Ndecdf9692a29405badb34ae6a3e6dbdd |
50 | ″ | schema:publisher | N8562313abc3c452c8a4cbb2bee551a05 |
51 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1022417385 |
52 | ″ | ″ | https://doi.org/10.1007/978-3-642-38905-4_17 |
53 | ″ | schema:sdDatePublished | 2022-05-20T07:45 |
54 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
55 | ″ | schema:sdPublisher | N6894784627cc41329d0f450cffa4eb1a |
56 | ″ | schema:url | https://doi.org/10.1007/978-3-642-38905-4_17 |
57 | ″ | sgo:license | sg:explorer/license/ |
58 | ″ | sgo:sdDataset | chapters |
59 | ″ | rdf:type | schema:Chapter |
60 | N0ad4ea7177e145fea8bdcd9820c20a2a | schema:familyName | Sanders |
61 | ″ | schema:givenName | Peter |
62 | ″ | rdf:type | schema:Person |
63 | N2ad737f6029d4ad3b17fd1c8432654b1 | rdf:first | sg:person.015252371751.76 |
64 | ″ | rdf:rest | rdf:nil |
65 | N5a35f132ce214a7dbc9fd0a1880b24c0 | schema:name | dimensions_id |
66 | ″ | schema:value | pub.1022417385 |
67 | ″ | rdf:type | schema:PropertyValue |
68 | N6894784627cc41329d0f450cffa4eb1a | schema:name | Springer Nature - SN SciGraph project |
69 | ″ | rdf:type | schema:Organization |
70 | N7316100587b149d9b30ce9ca04b0905f | rdf:first | Nc162f854cb9d4b4286dac3cf186b0df2 |
71 | ″ | rdf:rest | Nbd70a77d776a41b2a9324536452d557c |
72 | N8562313abc3c452c8a4cbb2bee551a05 | schema:name | Springer Nature |
73 | ″ | rdf:type | schema:Organisation |
74 | N9cd9a532527d48fd9e9da17ffaadbe73 | schema:isbn | 978-3-642-38904-7 |
75 | ″ | ″ | 978-3-642-38905-4 |
76 | ″ | schema:name | Combinatorial Pattern Matching |
77 | ″ | rdf:type | schema:Book |
78 | Nbd70a77d776a41b2a9324536452d557c | rdf:first | N0ad4ea7177e145fea8bdcd9820c20a2a |
79 | ″ | rdf:rest | rdf:nil |
80 | Nc162f854cb9d4b4286dac3cf186b0df2 | schema:familyName | Fischer |
81 | ″ | schema:givenName | Johannes |
82 | ″ | rdf:type | schema:Person |
83 | Ndecdf9692a29405badb34ae6a3e6dbdd | schema:name | doi |
84 | ″ | schema:value | 10.1007/978-3-642-38905-4_17 |
85 | ″ | rdf:type | schema:PropertyValue |
86 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
87 | ″ | schema:name | Information and Computing Sciences |
88 | ″ | rdf:type | schema:DefinedTerm |
89 | anzsrc-for:0802 | schema:inDefinedTermSet | anzsrc-for: |
90 | ″ | schema:name | Computation Theory and Mathematics |
91 | ″ | rdf:type | schema:DefinedTerm |
92 | sg:person.015252371751.76 | schema:affiliation | grid-institutes:grid.8505.8 |
93 | ″ | schema:familyName | Jeż |
94 | ″ | schema:givenName | Artur |
95 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015252371751.76 |
96 | ″ | rdf:type | schema:Person |
97 | grid-institutes:grid.8505.8 | schema:alternateName | Institute of Computer Science, University of Wrocław, ul. Joliot-Curie 15, 50-383, Wrocław, Poland |
98 | ″ | schema:name | Institute of Computer Science, University of Wrocław, ul. Joliot-Curie 15, 50-383, Wrocław, Poland |
99 | ″ | ″ | Max Planck Institute für Informatik, Campus E1 4, DE-66123, Saarbrücken, Germany |
100 | ″ | rdf:type | schema:Organization |