Data-Driven Reduction of a Cardiac Myofilament Model View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013

AUTHORS

Tommaso Mansi , Bogdan Georgescu , Jagir Hussan , Peter J. Hunter , Ali Kamen , Dorin Comaniciu

ABSTRACT

This manuscript presents a novel, data-driven approach to reduce a detailed cellular model of cardiac myofilament (MF) for efficient and accurate cellular simulations towards cell-to-organ computation. Based on 700 different sarcomere dynamics calculated using Rice model, we show through manifold learning that sarcomere force (SF) dynamics lays surprisingly in a linear manifold despite the non-linear equations of the MF model. Then, we learn a multivariate adaptive regression spline (MARS) model to predict SF from the Rice model parameters and sarcomere length dynamics. Evaluation on 300 testing data showed a prediction error of less than 0.4 nN/mm2 in terms of maximum force amplitude and 0.87 ms in terms of time to force peak, which is comparable to the differences observed with experimental data. Moreover, MARS provided insights on the driving parameters of the model, mainly MF geometry and cell mechanical passive properties. Thus, our approach may not only constitute a fast and accurate alternative to the original Rice model but also provide insights on parameter sensitivity. More... »

PAGES

232-240

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-38899-6_28

DOI

http://dx.doi.org/10.1007/978-3-642-38899-6_28

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049884979


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporation, Corporate Technology, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporation, Corporate Technology, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mansi", 
        "givenName": "Tommaso", 
        "id": "sg:person.01217474726.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217474726.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporation, Corporate Technology, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporation, Corporate Technology, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Georgescu", 
        "givenName": "Bogdan", 
        "id": "sg:person.0703547214.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Auckland Bioengineering Institute, The University of Auckland, New Zealand", 
          "id": "http://www.grid.ac/institutes/grid.9654.e", 
          "name": [
            "Auckland Bioengineering Institute, The University of Auckland, New Zealand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hussan", 
        "givenName": "Jagir", 
        "id": "sg:person.0767057273.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767057273.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Auckland Bioengineering Institute, The University of Auckland, New Zealand", 
          "id": "http://www.grid.ac/institutes/grid.9654.e", 
          "name": [
            "Auckland Bioengineering Institute, The University of Auckland, New Zealand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hunter", 
        "givenName": "Peter J.", 
        "id": "sg:person.0706066560.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706066560.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporation, Corporate Technology, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporation, Corporate Technology, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kamen", 
        "givenName": "Ali", 
        "id": "sg:person.0656777564.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656777564.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporation, Corporate Technology, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporation, Corporate Technology, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Comaniciu", 
        "givenName": "Dorin", 
        "id": "sg:person.01066111014.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "This manuscript presents a novel, data-driven approach to reduce a detailed cellular model of cardiac myofilament (MF) for efficient and accurate cellular simulations towards cell-to-organ computation. Based on 700 different sarcomere dynamics calculated using Rice model, we show through manifold learning that sarcomere force (SF) dynamics lays surprisingly in a linear manifold despite the non-linear equations of the MF model. Then, we learn a multivariate adaptive regression spline (MARS) model to predict SF from the Rice model parameters and sarcomere length dynamics. Evaluation on 300 testing data showed a prediction error of less than 0.4 nN/mm2 in terms of maximum force amplitude and 0.87 ms in terms of time to force peak, which is comparable to the differences observed with experimental data. Moreover, MARS provided insights on the driving parameters of the model, mainly MF geometry and cell mechanical passive properties. Thus, our approach may not only constitute a fast and accurate alternative to the original Rice model but also provide insights on parameter sensitivity.", 
    "editor": [
      {
        "familyName": "Ourselin", 
        "givenName": "S\u00e9bastien", 
        "type": "Person"
      }, 
      {
        "familyName": "Rueckert", 
        "givenName": "Daniel", 
        "type": "Person"
      }, 
      {
        "familyName": "Smith", 
        "givenName": "Nicolas", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-38899-6_28", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-38898-9", 
        "978-3-642-38899-6"
      ], 
      "name": "Functional Imaging and Modeling of the Heart", 
      "type": "Book"
    }, 
    "keywords": [
      "non-linear equations", 
      "multivariate adaptive regression splines (MARS) model", 
      "adaptive regression splines (MARS) model", 
      "detailed cellular models", 
      "regression spline models", 
      "linear manifold", 
      "Rice model", 
      "cellular simulations", 
      "spline model", 
      "myofilament model", 
      "model parameters", 
      "parameter sensitivity", 
      "manifold learning", 
      "data-driven approach", 
      "length dynamics", 
      "prediction error", 
      "MF model", 
      "manifold", 
      "dynamics", 
      "equations", 
      "model", 
      "computation", 
      "accurate alternative", 
      "approach", 
      "parameters", 
      "experimental data", 
      "terms of time", 
      "terms", 
      "testing data", 
      "geometry", 
      "simulations", 
      "error", 
      "MARS", 
      "passive properties", 
      "cardiac myofilaments", 
      "force amplitude", 
      "sarcomere dynamics", 
      "data", 
      "properties", 
      "learning", 
      "alternative", 
      "amplitude", 
      "insights", 
      "time", 
      "manuscript", 
      "cellular model", 
      "evaluation", 
      "reduction", 
      "sensitivity", 
      "lay", 
      "SF", 
      "peak", 
      "differences", 
      "ms", 
      "cells", 
      "myofilaments", 
      "mm2", 
      "accurate cellular simulations", 
      "organ computation", 
      "different sarcomere dynamics", 
      "sarcomere force (SF) dynamics lays", 
      "force (SF) dynamics lays", 
      "dynamics lays", 
      "Rice model parameters", 
      "sarcomere length dynamics", 
      "maximum force amplitude", 
      "MF geometry", 
      "cell mechanical passive properties", 
      "mechanical passive properties", 
      "original Rice model", 
      "Data-Driven Reduction", 
      "Cardiac Myofilament Model"
    ], 
    "name": "Data-Driven Reduction of a Cardiac Myofilament Model", 
    "pagination": "232-240", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049884979"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-38899-6_28"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-38899-6_28", 
      "https://app.dimensions.ai/details/publication/pub.1049884979"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_194.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-38899-6_28"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-38899-6_28'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-38899-6_28'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-38899-6_28'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-38899-6_28'


 

This table displays all metadata directly associated to this object as RDF triples.

180 TRIPLES      23 PREDICATES      98 URIs      91 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-38899-6_28 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author Nb53a4712f78249eb9c4c3d57ee03f411
4 schema:datePublished 2013
5 schema:datePublishedReg 2013-01-01
6 schema:description This manuscript presents a novel, data-driven approach to reduce a detailed cellular model of cardiac myofilament (MF) for efficient and accurate cellular simulations towards cell-to-organ computation. Based on 700 different sarcomere dynamics calculated using Rice model, we show through manifold learning that sarcomere force (SF) dynamics lays surprisingly in a linear manifold despite the non-linear equations of the MF model. Then, we learn a multivariate adaptive regression spline (MARS) model to predict SF from the Rice model parameters and sarcomere length dynamics. Evaluation on 300 testing data showed a prediction error of less than 0.4 nN/mm2 in terms of maximum force amplitude and 0.87 ms in terms of time to force peak, which is comparable to the differences observed with experimental data. Moreover, MARS provided insights on the driving parameters of the model, mainly MF geometry and cell mechanical passive properties. Thus, our approach may not only constitute a fast and accurate alternative to the original Rice model but also provide insights on parameter sensitivity.
7 schema:editor Nade01668bbe14652b86915ef126d5273
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N3497281fb46d4f2aa192f3086c8fa818
12 schema:keywords Cardiac Myofilament Model
13 Data-Driven Reduction
14 MARS
15 MF geometry
16 MF model
17 Rice model
18 Rice model parameters
19 SF
20 accurate alternative
21 accurate cellular simulations
22 adaptive regression splines (MARS) model
23 alternative
24 amplitude
25 approach
26 cardiac myofilaments
27 cell mechanical passive properties
28 cells
29 cellular model
30 cellular simulations
31 computation
32 data
33 data-driven approach
34 detailed cellular models
35 differences
36 different sarcomere dynamics
37 dynamics
38 dynamics lays
39 equations
40 error
41 evaluation
42 experimental data
43 force (SF) dynamics lays
44 force amplitude
45 geometry
46 insights
47 lay
48 learning
49 length dynamics
50 linear manifold
51 manifold
52 manifold learning
53 manuscript
54 maximum force amplitude
55 mechanical passive properties
56 mm2
57 model
58 model parameters
59 ms
60 multivariate adaptive regression splines (MARS) model
61 myofilament model
62 myofilaments
63 non-linear equations
64 organ computation
65 original Rice model
66 parameter sensitivity
67 parameters
68 passive properties
69 peak
70 prediction error
71 properties
72 reduction
73 regression spline models
74 sarcomere dynamics
75 sarcomere force (SF) dynamics lays
76 sarcomere length dynamics
77 sensitivity
78 simulations
79 spline model
80 terms
81 terms of time
82 testing data
83 time
84 schema:name Data-Driven Reduction of a Cardiac Myofilament Model
85 schema:pagination 232-240
86 schema:productId N9175d80dcaac4700927528c1e41c9779
87 Ned4d96552eed4652b5ee07ec05ab195e
88 schema:publisher N553adf0985af4c1cb1d92bd8dad53788
89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049884979
90 https://doi.org/10.1007/978-3-642-38899-6_28
91 schema:sdDatePublished 2022-01-01T19:11
92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
93 schema:sdPublisher N8259a599b1cc4ebfbca3e874c986580a
94 schema:url https://doi.org/10.1007/978-3-642-38899-6_28
95 sgo:license sg:explorer/license/
96 sgo:sdDataset chapters
97 rdf:type schema:Chapter
98 N29e8022c524d45e48ced127f4c4f7553 rdf:first sg:person.01066111014.77
99 rdf:rest rdf:nil
100 N3497281fb46d4f2aa192f3086c8fa818 schema:isbn 978-3-642-38898-9
101 978-3-642-38899-6
102 schema:name Functional Imaging and Modeling of the Heart
103 rdf:type schema:Book
104 N553adf0985af4c1cb1d92bd8dad53788 schema:name Springer Nature
105 rdf:type schema:Organisation
106 N59f58bd2501942a48d19f74c6739aeb9 rdf:first sg:person.0706066560.78
107 rdf:rest Ne1b99d0fcedf49cb9b15f5fad905a623
108 N5c3c8e4d3b4343ba99f01cfeda5c6d94 rdf:first sg:person.0703547214.37
109 rdf:rest N633101b13e91496cbc2d84a79ba448ed
110 N633101b13e91496cbc2d84a79ba448ed rdf:first sg:person.0767057273.71
111 rdf:rest N59f58bd2501942a48d19f74c6739aeb9
112 N8259a599b1cc4ebfbca3e874c986580a schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 N84ac6d8a66814006b6a7270c0aee562c rdf:first N9de2ea87257848f894ab8120bede7ad8
115 rdf:rest Nf948ff711e634d7482c04333645184d1
116 N9175d80dcaac4700927528c1e41c9779 schema:name doi
117 schema:value 10.1007/978-3-642-38899-6_28
118 rdf:type schema:PropertyValue
119 N9de2ea87257848f894ab8120bede7ad8 schema:familyName Rueckert
120 schema:givenName Daniel
121 rdf:type schema:Person
122 Nade01668bbe14652b86915ef126d5273 rdf:first Nfa92da1c3bab4969941b24eee737cc34
123 rdf:rest N84ac6d8a66814006b6a7270c0aee562c
124 Nb53a4712f78249eb9c4c3d57ee03f411 rdf:first sg:person.01217474726.73
125 rdf:rest N5c3c8e4d3b4343ba99f01cfeda5c6d94
126 Nbaac6c77d9624638968f7dfe883142d3 schema:familyName Smith
127 schema:givenName Nicolas
128 rdf:type schema:Person
129 Ne1b99d0fcedf49cb9b15f5fad905a623 rdf:first sg:person.0656777564.42
130 rdf:rest N29e8022c524d45e48ced127f4c4f7553
131 Ned4d96552eed4652b5ee07ec05ab195e schema:name dimensions_id
132 schema:value pub.1049884979
133 rdf:type schema:PropertyValue
134 Nf948ff711e634d7482c04333645184d1 rdf:first Nbaac6c77d9624638968f7dfe883142d3
135 rdf:rest rdf:nil
136 Nfa92da1c3bab4969941b24eee737cc34 schema:familyName Ourselin
137 schema:givenName Sébastien
138 rdf:type schema:Person
139 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
140 schema:name Mathematical Sciences
141 rdf:type schema:DefinedTerm
142 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
143 schema:name Applied Mathematics
144 rdf:type schema:DefinedTerm
145 sg:person.01066111014.77 schema:affiliation grid-institutes:grid.419233.e
146 schema:familyName Comaniciu
147 schema:givenName Dorin
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77
149 rdf:type schema:Person
150 sg:person.01217474726.73 schema:affiliation grid-institutes:grid.419233.e
151 schema:familyName Mansi
152 schema:givenName Tommaso
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217474726.73
154 rdf:type schema:Person
155 sg:person.0656777564.42 schema:affiliation grid-institutes:grid.419233.e
156 schema:familyName Kamen
157 schema:givenName Ali
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656777564.42
159 rdf:type schema:Person
160 sg:person.0703547214.37 schema:affiliation grid-institutes:grid.419233.e
161 schema:familyName Georgescu
162 schema:givenName Bogdan
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37
164 rdf:type schema:Person
165 sg:person.0706066560.78 schema:affiliation grid-institutes:grid.9654.e
166 schema:familyName Hunter
167 schema:givenName Peter J.
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706066560.78
169 rdf:type schema:Person
170 sg:person.0767057273.71 schema:affiliation grid-institutes:grid.9654.e
171 schema:familyName Hussan
172 schema:givenName Jagir
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767057273.71
174 rdf:type schema:Person
175 grid-institutes:grid.419233.e schema:alternateName Imaging and Computer Vision, Siemens Corporation, Corporate Technology, Princeton, NJ, USA
176 schema:name Imaging and Computer Vision, Siemens Corporation, Corporate Technology, Princeton, NJ, USA
177 rdf:type schema:Organization
178 grid-institutes:grid.9654.e schema:alternateName Auckland Bioengineering Institute, The University of Auckland, New Zealand
179 schema:name Auckland Bioengineering Institute, The University of Auckland, New Zealand
180 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...