Data-Driven Reduction of a Cardiac Myofilament Model View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013

AUTHORS

Tommaso Mansi , Bogdan Georgescu , Jagir Hussan , Peter J. Hunter , Ali Kamen , Dorin Comaniciu

ABSTRACT

This manuscript presents a novel, data-driven approach to reduce a detailed cellular model of cardiac myofilament (MF) for efficient and accurate cellular simulations towards cell-to-organ computation. Based on 700 different sarcomere dynamics calculated using Rice model, we show through manifold learning that sarcomere force (SF) dynamics lays surprisingly in a linear manifold despite the non-linear equations of the MF model. Then, we learn a multivariate adaptive regression spline (MARS) model to predict SF from the Rice model parameters and sarcomere length dynamics. Evaluation on 300 testing data showed a prediction error of less than 0.4 nN/mm2 in terms of maximum force amplitude and 0.87 ms in terms of time to force peak, which is comparable to the differences observed with experimental data. Moreover, MARS provided insights on the driving parameters of the model, mainly MF geometry and cell mechanical passive properties. Thus, our approach may not only constitute a fast and accurate alternative to the original Rice model but also provide insights on parameter sensitivity. More... »

PAGES

232-240

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-38899-6_28

DOI

http://dx.doi.org/10.1007/978-3-642-38899-6_28

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049884979


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporation, Corporate Technology, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporation, Corporate Technology, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mansi", 
        "givenName": "Tommaso", 
        "id": "sg:person.01217474726.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217474726.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporation, Corporate Technology, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporation, Corporate Technology, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Georgescu", 
        "givenName": "Bogdan", 
        "id": "sg:person.0703547214.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Auckland Bioengineering Institute, The University of Auckland, New Zealand", 
          "id": "http://www.grid.ac/institutes/grid.9654.e", 
          "name": [
            "Auckland Bioengineering Institute, The University of Auckland, New Zealand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hussan", 
        "givenName": "Jagir", 
        "id": "sg:person.0767057273.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767057273.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Auckland Bioengineering Institute, The University of Auckland, New Zealand", 
          "id": "http://www.grid.ac/institutes/grid.9654.e", 
          "name": [
            "Auckland Bioengineering Institute, The University of Auckland, New Zealand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hunter", 
        "givenName": "Peter J.", 
        "id": "sg:person.0706066560.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706066560.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporation, Corporate Technology, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporation, Corporate Technology, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kamen", 
        "givenName": "Ali", 
        "id": "sg:person.0656777564.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656777564.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporation, Corporate Technology, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporation, Corporate Technology, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Comaniciu", 
        "givenName": "Dorin", 
        "id": "sg:person.01066111014.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "This manuscript presents a novel, data-driven approach to reduce a detailed cellular model of cardiac myofilament (MF) for efficient and accurate cellular simulations towards cell-to-organ computation. Based on 700 different sarcomere dynamics calculated using Rice model, we show through manifold learning that sarcomere force (SF) dynamics lays surprisingly in a linear manifold despite the non-linear equations of the MF model. Then, we learn a multivariate adaptive regression spline (MARS) model to predict SF from the Rice model parameters and sarcomere length dynamics. Evaluation on 300 testing data showed a prediction error of less than 0.4 nN/mm2 in terms of maximum force amplitude and 0.87 ms in terms of time to force peak, which is comparable to the differences observed with experimental data. Moreover, MARS provided insights on the driving parameters of the model, mainly MF geometry and cell mechanical passive properties. Thus, our approach may not only constitute a fast and accurate alternative to the original Rice model but also provide insights on parameter sensitivity.", 
    "editor": [
      {
        "familyName": "Ourselin", 
        "givenName": "S\u00e9bastien", 
        "type": "Person"
      }, 
      {
        "familyName": "Rueckert", 
        "givenName": "Daniel", 
        "type": "Person"
      }, 
      {
        "familyName": "Smith", 
        "givenName": "Nicolas", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-38899-6_28", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-38898-9", 
        "978-3-642-38899-6"
      ], 
      "name": "Functional Imaging and Modeling of the Heart", 
      "type": "Book"
    }, 
    "keywords": [
      "non-linear equations", 
      "adaptive regression splines model", 
      "multivariate adaptive regression splines (MARS) model", 
      "regression spline models", 
      "linear manifold", 
      "detailed cellular models", 
      "myofilament model", 
      "Rice model", 
      "parameter sensitivity", 
      "model parameters", 
      "cellular simulations", 
      "spline model", 
      "MF model", 
      "manifold learning", 
      "prediction error", 
      "experimental data", 
      "length dynamics", 
      "force amplitude", 
      "dynamics", 
      "data-driven approach", 
      "accurate alternative", 
      "manifold", 
      "equations", 
      "model", 
      "parameters", 
      "computation", 
      "geometry", 
      "terms", 
      "terms of time", 
      "simulations", 
      "approach", 
      "error", 
      "passive properties", 
      "testing data", 
      "amplitude", 
      "MARS", 
      "properties", 
      "data", 
      "sarcomere dynamics", 
      "time", 
      "peak", 
      "insights", 
      "alternative", 
      "learning", 
      "manuscript", 
      "reduction", 
      "sensitivity", 
      "cellular model", 
      "cardiac myofilaments", 
      "evaluation", 
      "ms", 
      "SF", 
      "mm2", 
      "lay", 
      "differences", 
      "cells", 
      "myofilaments"
    ], 
    "name": "Data-Driven Reduction of a Cardiac Myofilament Model", 
    "pagination": "232-240", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049884979"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-38899-6_28"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-38899-6_28", 
      "https://app.dimensions.ai/details/publication/pub.1049884979"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_439.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-38899-6_28"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-38899-6_28'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-38899-6_28'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-38899-6_28'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-38899-6_28'


 

This table displays all metadata directly associated to this object as RDF triples.

165 TRIPLES      23 PREDICATES      83 URIs      76 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-38899-6_28 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N30924f7d051a43d1843a1b462f19588b
4 schema:datePublished 2013
5 schema:datePublishedReg 2013-01-01
6 schema:description This manuscript presents a novel, data-driven approach to reduce a detailed cellular model of cardiac myofilament (MF) for efficient and accurate cellular simulations towards cell-to-organ computation. Based on 700 different sarcomere dynamics calculated using Rice model, we show through manifold learning that sarcomere force (SF) dynamics lays surprisingly in a linear manifold despite the non-linear equations of the MF model. Then, we learn a multivariate adaptive regression spline (MARS) model to predict SF from the Rice model parameters and sarcomere length dynamics. Evaluation on 300 testing data showed a prediction error of less than 0.4 nN/mm2 in terms of maximum force amplitude and 0.87 ms in terms of time to force peak, which is comparable to the differences observed with experimental data. Moreover, MARS provided insights on the driving parameters of the model, mainly MF geometry and cell mechanical passive properties. Thus, our approach may not only constitute a fast and accurate alternative to the original Rice model but also provide insights on parameter sensitivity.
7 schema:editor Nb2076e5ea0004daebef45a105c60d31e
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N5d9330d715a84babb99ba787c7319854
12 schema:keywords MARS
13 MF model
14 Rice model
15 SF
16 accurate alternative
17 adaptive regression splines model
18 alternative
19 amplitude
20 approach
21 cardiac myofilaments
22 cells
23 cellular model
24 cellular simulations
25 computation
26 data
27 data-driven approach
28 detailed cellular models
29 differences
30 dynamics
31 equations
32 error
33 evaluation
34 experimental data
35 force amplitude
36 geometry
37 insights
38 lay
39 learning
40 length dynamics
41 linear manifold
42 manifold
43 manifold learning
44 manuscript
45 mm2
46 model
47 model parameters
48 ms
49 multivariate adaptive regression splines (MARS) model
50 myofilament model
51 myofilaments
52 non-linear equations
53 parameter sensitivity
54 parameters
55 passive properties
56 peak
57 prediction error
58 properties
59 reduction
60 regression spline models
61 sarcomere dynamics
62 sensitivity
63 simulations
64 spline model
65 terms
66 terms of time
67 testing data
68 time
69 schema:name Data-Driven Reduction of a Cardiac Myofilament Model
70 schema:pagination 232-240
71 schema:productId N1f7cc90522cf4a2f8251c545cabb911a
72 N5e2bdfaeb22a48eba477dfd1bcb83fc7
73 schema:publisher N2684fbe69a434a59b4134c68de5796cb
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049884979
75 https://doi.org/10.1007/978-3-642-38899-6_28
76 schema:sdDatePublished 2022-05-20T07:48
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N520b64bae9f34b668be35ecfa01c3909
79 schema:url https://doi.org/10.1007/978-3-642-38899-6_28
80 sgo:license sg:explorer/license/
81 sgo:sdDataset chapters
82 rdf:type schema:Chapter
83 N047530e1440147eea58b2033c10ca001 rdf:first sg:person.0767057273.71
84 rdf:rest Nb8cf46aa1bb7431a9713f03c6ca6d682
85 N06443ec32f704516b28211c2c555119a rdf:first sg:person.01066111014.77
86 rdf:rest rdf:nil
87 N1f7cc90522cf4a2f8251c545cabb911a schema:name doi
88 schema:value 10.1007/978-3-642-38899-6_28
89 rdf:type schema:PropertyValue
90 N2684fbe69a434a59b4134c68de5796cb schema:name Springer Nature
91 rdf:type schema:Organisation
92 N30924f7d051a43d1843a1b462f19588b rdf:first sg:person.01217474726.73
93 rdf:rest Nf43ba0a50c354c119e496778bb0db288
94 N520b64bae9f34b668be35ecfa01c3909 schema:name Springer Nature - SN SciGraph project
95 rdf:type schema:Organization
96 N5d9330d715a84babb99ba787c7319854 schema:isbn 978-3-642-38898-9
97 978-3-642-38899-6
98 schema:name Functional Imaging and Modeling of the Heart
99 rdf:type schema:Book
100 N5e2bdfaeb22a48eba477dfd1bcb83fc7 schema:name dimensions_id
101 schema:value pub.1049884979
102 rdf:type schema:PropertyValue
103 N777e0cfb50274f369dfcb419000c0a96 schema:familyName Ourselin
104 schema:givenName Sébastien
105 rdf:type schema:Person
106 N7851780cb18a4e92986f7de46c4fbb15 schema:familyName Smith
107 schema:givenName Nicolas
108 rdf:type schema:Person
109 Naa812d8f46ee4d31a5210633635ef766 schema:familyName Rueckert
110 schema:givenName Daniel
111 rdf:type schema:Person
112 Nb2076e5ea0004daebef45a105c60d31e rdf:first N777e0cfb50274f369dfcb419000c0a96
113 rdf:rest Nc0f2a2cd9e5a4eaaac1471f971e90d18
114 Nb8cf46aa1bb7431a9713f03c6ca6d682 rdf:first sg:person.0706066560.78
115 rdf:rest Ncb16797f094a47e9a08b01ec5135fd5c
116 Nc0f2a2cd9e5a4eaaac1471f971e90d18 rdf:first Naa812d8f46ee4d31a5210633635ef766
117 rdf:rest Ncbac7d505eed4040a5fd77fb713d25ac
118 Ncb16797f094a47e9a08b01ec5135fd5c rdf:first sg:person.0656777564.42
119 rdf:rest N06443ec32f704516b28211c2c555119a
120 Ncbac7d505eed4040a5fd77fb713d25ac rdf:first N7851780cb18a4e92986f7de46c4fbb15
121 rdf:rest rdf:nil
122 Nf43ba0a50c354c119e496778bb0db288 rdf:first sg:person.0703547214.37
123 rdf:rest N047530e1440147eea58b2033c10ca001
124 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
125 schema:name Mathematical Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
128 schema:name Applied Mathematics
129 rdf:type schema:DefinedTerm
130 sg:person.01066111014.77 schema:affiliation grid-institutes:grid.419233.e
131 schema:familyName Comaniciu
132 schema:givenName Dorin
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77
134 rdf:type schema:Person
135 sg:person.01217474726.73 schema:affiliation grid-institutes:grid.419233.e
136 schema:familyName Mansi
137 schema:givenName Tommaso
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217474726.73
139 rdf:type schema:Person
140 sg:person.0656777564.42 schema:affiliation grid-institutes:grid.419233.e
141 schema:familyName Kamen
142 schema:givenName Ali
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656777564.42
144 rdf:type schema:Person
145 sg:person.0703547214.37 schema:affiliation grid-institutes:grid.419233.e
146 schema:familyName Georgescu
147 schema:givenName Bogdan
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37
149 rdf:type schema:Person
150 sg:person.0706066560.78 schema:affiliation grid-institutes:grid.9654.e
151 schema:familyName Hunter
152 schema:givenName Peter J.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706066560.78
154 rdf:type schema:Person
155 sg:person.0767057273.71 schema:affiliation grid-institutes:grid.9654.e
156 schema:familyName Hussan
157 schema:givenName Jagir
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767057273.71
159 rdf:type schema:Person
160 grid-institutes:grid.419233.e schema:alternateName Imaging and Computer Vision, Siemens Corporation, Corporate Technology, Princeton, NJ, USA
161 schema:name Imaging and Computer Vision, Siemens Corporation, Corporate Technology, Princeton, NJ, USA
162 rdf:type schema:Organization
163 grid-institutes:grid.9654.e schema:alternateName Auckland Bioengineering Institute, The University of Auckland, New Zealand
164 schema:name Auckland Bioengineering Institute, The University of Auckland, New Zealand
165 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...