Ontology type: schema:Chapter
2013
AUTHORS ABSTRACTIt is demonstrated that unambiguous conjunctive grammars over a unary alphabet Σ = {a} have non-trivial expressive power, and that their basic properties are undecidable. The key result is that for every base \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k \geqslant 11$\end{document} and for every one-way real-time cellular automaton operating over the alphabet of base-k digits \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\big\{\lfloor\frac{k+9}{4}\rfloor, \ldots, \lfloor\frac{k+1}{2}\rfloor\big\}$\end{document}, the language of all strings an with the base-k notation of the form 1w1, where w is accepted by the automaton, is generated by an unambiguous conjunctive grammar. Another encoding is used to simulate a cellular automaton in a unary language containing almost all strings. These constructions are used to show that for every fixed unambiguous conjunctive language L0, testing whether a given unambiguous conjunctive grammar generates L0 is undecidable. More... »
PAGES277-288
Developments in Language Theory
ISBN
978-3-642-38770-8
978-3-642-38771-5
http://scigraph.springernature.com/pub.10.1007/978-3-642-38771-5_25
DOIhttp://dx.doi.org/10.1007/978-3-642-38771-5_25
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1017013633
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/20",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Language, Communication and Culture",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2004",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Linguistics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute of Computer Science, University of Wroc\u0142aw, Poland",
"id": "http://www.grid.ac/institutes/grid.8505.8",
"name": [
"Max-Planck-Institut f\u00fcr Informatik, Saarbr\u00fccken, Germany",
"Institute of Computer Science, University of Wroc\u0142aw, Poland"
],
"type": "Organization"
},
"familyName": "Je\u017c",
"givenName": "Artur",
"id": "sg:person.015252371751.76",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015252371751.76"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics and Statistics, University of Turku, Finland",
"id": "http://www.grid.ac/institutes/grid.1374.1",
"name": [
"Department of Mathematics and Statistics, University of Turku, Finland"
],
"type": "Organization"
},
"familyName": "Okhotin",
"givenName": "Alexander",
"id": "sg:person.012144356031.48",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012144356031.48"
],
"type": "Person"
}
],
"datePublished": "2013",
"datePublishedReg": "2013-01-01",
"description": "It is demonstrated that unambiguous conjunctive grammars over a unary alphabet \u03a3\u2009=\u2009{a} have non-trivial expressive power, and that their basic properties are undecidable. The key result is that for every base \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$k \\geqslant 11$\\end{document} and for every one-way real-time cellular automaton operating over the alphabet of base-k digits \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\big\\{\\lfloor\\frac{k+9}{4}\\rfloor, \\ldots, \\lfloor\\frac{k+1}{2}\\rfloor\\big\\}$\\end{document}, the language of all strings an with the base-k notation of the form 1w1, where w is accepted by the automaton, is generated by an unambiguous conjunctive grammar. Another encoding is used to simulate a cellular automaton in a unary language containing almost all strings. These constructions are used to show that for every fixed unambiguous conjunctive language L0, testing whether a given unambiguous conjunctive grammar generates L0 is undecidable.",
"editor": [
{
"familyName": "B\u00e9al",
"givenName": "Marie-Pierre",
"type": "Person"
},
{
"familyName": "Carton",
"givenName": "Olivier",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-38771-5_25",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-642-38770-8",
"978-3-642-38771-5"
],
"name": "Developments in Language Theory",
"type": "Book"
},
"keywords": [
"conjunctive grammars",
"one-way real-time cellular automata",
"one-letter alphabet",
"unary languages",
"grammar",
"language",
"alphabet \u03a3",
"expressive power",
"alphabet",
"automata",
"construction",
"strings",
"notation",
"power",
"encoding",
"base",
"key results",
"digits",
"L0",
"basic properties",
"results",
"cellular automata",
"properties"
],
"name": "Unambiguous Conjunctive Grammars over a One-Letter Alphabet",
"pagination": "277-288",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1017013633"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-38771-5_25"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-38771-5_25",
"https://app.dimensions.ai/details/publication/pub.1017013633"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:45",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_297.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-642-38771-5_25"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-38771-5_25'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-38771-5_25'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-38771-5_25'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-38771-5_25'
This table displays all metadata directly associated to this object as RDF triples.
99 TRIPLES
23 PREDICATES
49 URIs
42 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-642-38771-5_25 | schema:about | anzsrc-for:20 |
2 | ″ | ″ | anzsrc-for:2004 |
3 | ″ | schema:author | N92556152d2574c1ab78417d0d9cdb18c |
4 | ″ | schema:datePublished | 2013 |
5 | ″ | schema:datePublishedReg | 2013-01-01 |
6 | ″ | schema:description | It is demonstrated that unambiguous conjunctive grammars over a unary alphabet Σ = {a} have non-trivial expressive power, and that their basic properties are undecidable. The key result is that for every base \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k \geqslant 11$\end{document} and for every one-way real-time cellular automaton operating over the alphabet of base-k digits \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\big\{\lfloor\frac{k+9}{4}\rfloor, \ldots, \lfloor\frac{k+1}{2}\rfloor\big\}$\end{document}, the language of all strings an with the base-k notation of the form 1w1, where w is accepted by the automaton, is generated by an unambiguous conjunctive grammar. Another encoding is used to simulate a cellular automaton in a unary language containing almost all strings. These constructions are used to show that for every fixed unambiguous conjunctive language L0, testing whether a given unambiguous conjunctive grammar generates L0 is undecidable. |
7 | ″ | schema:editor | Nbdccdd07c5fd456d9ea611e90a5f3272 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N2a50d6cfeea54b34b882763cd39166ed |
12 | ″ | schema:keywords | L0 |
13 | ″ | ″ | alphabet |
14 | ″ | ″ | alphabet Σ |
15 | ″ | ″ | automata |
16 | ″ | ″ | base |
17 | ″ | ″ | basic properties |
18 | ″ | ″ | cellular automata |
19 | ″ | ″ | conjunctive grammars |
20 | ″ | ″ | construction |
21 | ″ | ″ | digits |
22 | ″ | ″ | encoding |
23 | ″ | ″ | expressive power |
24 | ″ | ″ | grammar |
25 | ″ | ″ | key results |
26 | ″ | ″ | language |
27 | ″ | ″ | notation |
28 | ″ | ″ | one-letter alphabet |
29 | ″ | ″ | one-way real-time cellular automata |
30 | ″ | ″ | power |
31 | ″ | ″ | properties |
32 | ″ | ″ | results |
33 | ″ | ″ | strings |
34 | ″ | ″ | unary languages |
35 | ″ | schema:name | Unambiguous Conjunctive Grammars over a One-Letter Alphabet |
36 | ″ | schema:pagination | 277-288 |
37 | ″ | schema:productId | N66ce622bcd3c43788676b6f730fb2b4c |
38 | ″ | ″ | Nfedb11d2d1c04ef184c19b6ebb817ca5 |
39 | ″ | schema:publisher | N11a10f8bfe7c49bf8806a16fa4291eb3 |
40 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1017013633 |
41 | ″ | ″ | https://doi.org/10.1007/978-3-642-38771-5_25 |
42 | ″ | schema:sdDatePublished | 2022-05-20T07:45 |
43 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
44 | ″ | schema:sdPublisher | N093d731d0949469db1f58cab283a39bb |
45 | ″ | schema:url | https://doi.org/10.1007/978-3-642-38771-5_25 |
46 | ″ | sgo:license | sg:explorer/license/ |
47 | ″ | sgo:sdDataset | chapters |
48 | ″ | rdf:type | schema:Chapter |
49 | N093d731d0949469db1f58cab283a39bb | schema:name | Springer Nature - SN SciGraph project |
50 | ″ | rdf:type | schema:Organization |
51 | N0c24d805422348e295baf2d10c4a1131 | rdf:first | Nd4f738eb95ce46afb24a1aec86a0a1b7 |
52 | ″ | rdf:rest | rdf:nil |
53 | N11a10f8bfe7c49bf8806a16fa4291eb3 | schema:name | Springer Nature |
54 | ″ | rdf:type | schema:Organisation |
55 | N28d3339616754b7891ee5eaf3746296a | rdf:first | sg:person.012144356031.48 |
56 | ″ | rdf:rest | rdf:nil |
57 | N2a50d6cfeea54b34b882763cd39166ed | schema:isbn | 978-3-642-38770-8 |
58 | ″ | ″ | 978-3-642-38771-5 |
59 | ″ | schema:name | Developments in Language Theory |
60 | ″ | rdf:type | schema:Book |
61 | N5cd310aa0d83450f8b1aef8475793f39 | schema:familyName | Béal |
62 | ″ | schema:givenName | Marie-Pierre |
63 | ″ | rdf:type | schema:Person |
64 | N66ce622bcd3c43788676b6f730fb2b4c | schema:name | doi |
65 | ″ | schema:value | 10.1007/978-3-642-38771-5_25 |
66 | ″ | rdf:type | schema:PropertyValue |
67 | N92556152d2574c1ab78417d0d9cdb18c | rdf:first | sg:person.015252371751.76 |
68 | ″ | rdf:rest | N28d3339616754b7891ee5eaf3746296a |
69 | Nbdccdd07c5fd456d9ea611e90a5f3272 | rdf:first | N5cd310aa0d83450f8b1aef8475793f39 |
70 | ″ | rdf:rest | N0c24d805422348e295baf2d10c4a1131 |
71 | Nd4f738eb95ce46afb24a1aec86a0a1b7 | schema:familyName | Carton |
72 | ″ | schema:givenName | Olivier |
73 | ″ | rdf:type | schema:Person |
74 | Nfedb11d2d1c04ef184c19b6ebb817ca5 | schema:name | dimensions_id |
75 | ″ | schema:value | pub.1017013633 |
76 | ″ | rdf:type | schema:PropertyValue |
77 | anzsrc-for:20 | schema:inDefinedTermSet | anzsrc-for: |
78 | ″ | schema:name | Language, Communication and Culture |
79 | ″ | rdf:type | schema:DefinedTerm |
80 | anzsrc-for:2004 | schema:inDefinedTermSet | anzsrc-for: |
81 | ″ | schema:name | Linguistics |
82 | ″ | rdf:type | schema:DefinedTerm |
83 | sg:person.012144356031.48 | schema:affiliation | grid-institutes:grid.1374.1 |
84 | ″ | schema:familyName | Okhotin |
85 | ″ | schema:givenName | Alexander |
86 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012144356031.48 |
87 | ″ | rdf:type | schema:Person |
88 | sg:person.015252371751.76 | schema:affiliation | grid-institutes:grid.8505.8 |
89 | ″ | schema:familyName | Jeż |
90 | ″ | schema:givenName | Artur |
91 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015252371751.76 |
92 | ″ | rdf:type | schema:Person |
93 | grid-institutes:grid.1374.1 | schema:alternateName | Department of Mathematics and Statistics, University of Turku, Finland |
94 | ″ | schema:name | Department of Mathematics and Statistics, University of Turku, Finland |
95 | ″ | rdf:type | schema:Organization |
96 | grid-institutes:grid.8505.8 | schema:alternateName | Institute of Computer Science, University of Wrocław, Poland |
97 | ″ | schema:name | Institute of Computer Science, University of Wrocław, Poland |
98 | ″ | ″ | Max-Planck-Institut für Informatik, Saarbrücken, Germany |
99 | ″ | rdf:type | schema:Organization |