2013
AUTHORS ABSTRACTDue to hybridization events in evolution, studying two different genes of a set of species may yield two related but different phylogenetic trees for the set of species. In this case, we want to measure the dissimilarity of the two trees. The rooted subtree prune and regraft (rSPR) distance of the two trees has been used for this purpose, and many algorithms and software tools have been developed for computing the rSPR distance of two given phylogenetic trees. The previously fastest exact algorithm for this problem runs in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O\left(2.415^dn\right)$\end{document} time, where n and d are the number of leaves and the rSPR distance of the input trees, respectively. In this paper, we present a faster exact algorithm which runs in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O\left(2.344^dn\right)$\end{document} time. Our experiments show that the new algorithm can be significantly faster than the newest version (namely, v1.1.1) of the previously best software (namely, Whidden et al.’s RSPR) for rSPR distance. More... »
PAGES36-47
Frontiers in Algorithmics and Algorithmic Aspects in Information and Management
ISBN
978-3-642-38755-5
978-3-642-38756-2
http://scigraph.springernature.com/pub.10.1007/978-3-642-38756-2_7
DOIhttp://dx.doi.org/10.1007/978-3-642-38756-2_7
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1048239420
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Computation Theory and Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Information System Design, Tokyo Denki University, Hatoyama, 350-0394, Saitama, Japan",
"id": "http://www.grid.ac/institutes/grid.412773.4",
"name": [
"Department of Information System Design, Tokyo Denki University, Hatoyama, 350-0394, Saitama, Japan"
],
"type": "Organization"
},
"familyName": "Chen",
"givenName": "Zhi-Zhong",
"id": "sg:person.015654265661.98",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015654265661.98"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR"
],
"type": "Organization"
},
"familyName": "Wang",
"givenName": "Lusheng",
"id": "sg:person.01105113721.52",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105113721.52"
],
"type": "Person"
}
],
"datePublished": "2013",
"datePublishedReg": "2013-01-01",
"description": "Due to hybridization events in evolution, studying two different genes of a set of species may yield two related but different phylogenetic trees for the set of species. In this case, we want to measure the dissimilarity of the two trees. The rooted subtree prune and regraft (rSPR) distance of the two trees has been used for this purpose, and many algorithms and software tools have been developed for computing the rSPR distance of two given phylogenetic trees. The previously fastest exact algorithm for this problem runs in \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$O\\left(2.415^dn\\right)$\\end{document} time, where n and d are the number of leaves and the rSPR distance of the input trees, respectively. In this paper, we present a faster exact algorithm which runs in \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$O\\left(2.344^dn\\right)$\\end{document} time. Our experiments show that the new algorithm can be significantly faster than the newest version (namely, v1.1.1) of the previously best software (namely, Whidden et al.\u2019s RSPR) for rSPR distance.",
"editor": [
{
"familyName": "Fellows",
"givenName": "Michael",
"type": "Person"
},
{
"familyName": "Tan",
"givenName": "Xuehou",
"type": "Person"
},
{
"familyName": "Zhu",
"givenName": "Binhai",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-38756-2_7",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-642-38755-5",
"978-3-642-38756-2"
],
"name": "Frontiers in Algorithmics and Algorithmic Aspects in Information and Management",
"type": "Book"
},
"keywords": [
"set of species",
"rSPR distance",
"phylogenetic tree",
"different phylogenetic trees",
"number of leaves",
"hybridization events",
"different genes",
"regraft distance",
"subtree prune",
"Fast Exact Computation",
"species",
"trees",
"input trees",
"genes",
"leaves",
"evolution",
"dissimilarity",
"distance",
"events",
"number",
"prunes",
"set",
"experiments",
"software tools",
"tool",
"exact algorithm",
"time",
"fast exact algorithm",
"better software",
"new algorithm",
"algorithm",
"exact computation",
"new version",
"software",
"computation",
"purpose",
"version",
"cases",
"problem",
"paper"
],
"name": "Faster Exact Computation of rSPR Distance",
"pagination": "36-47",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1048239420"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-38756-2_7"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-38756-2_7",
"https://app.dimensions.ai/details/publication/pub.1048239420"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-10T10:44",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_26.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-642-38756-2_7"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-38756-2_7'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-38756-2_7'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-38756-2_7'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-38756-2_7'
This table displays all metadata directly associated to this object as RDF triples.
120 TRIPLES
23 PREDICATES
66 URIs
59 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-642-38756-2_7 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0802 |
3 | ″ | schema:author | N9a2bb6de212c4fe1bcf6ff90dbc6d4a4 |
4 | ″ | schema:datePublished | 2013 |
5 | ″ | schema:datePublishedReg | 2013-01-01 |
6 | ″ | schema:description | Due to hybridization events in evolution, studying two different genes of a set of species may yield two related but different phylogenetic trees for the set of species. In this case, we want to measure the dissimilarity of the two trees. The rooted subtree prune and regraft (rSPR) distance of the two trees has been used for this purpose, and many algorithms and software tools have been developed for computing the rSPR distance of two given phylogenetic trees. The previously fastest exact algorithm for this problem runs in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O\left(2.415^dn\right)$\end{document} time, where n and d are the number of leaves and the rSPR distance of the input trees, respectively. In this paper, we present a faster exact algorithm which runs in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O\left(2.344^dn\right)$\end{document} time. Our experiments show that the new algorithm can be significantly faster than the newest version (namely, v1.1.1) of the previously best software (namely, Whidden et al.’s RSPR) for rSPR distance. |
7 | ″ | schema:editor | N180275c892054275ac8a4fa8ffc0d75f |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | Nf75693b1cb2b4b30add3b07fd190b161 |
12 | ″ | schema:keywords | Fast Exact Computation |
13 | ″ | ″ | algorithm |
14 | ″ | ″ | better software |
15 | ″ | ″ | cases |
16 | ″ | ″ | computation |
17 | ″ | ″ | different genes |
18 | ″ | ″ | different phylogenetic trees |
19 | ″ | ″ | dissimilarity |
20 | ″ | ″ | distance |
21 | ″ | ″ | events |
22 | ″ | ″ | evolution |
23 | ″ | ″ | exact algorithm |
24 | ″ | ″ | exact computation |
25 | ″ | ″ | experiments |
26 | ″ | ″ | fast exact algorithm |
27 | ″ | ″ | genes |
28 | ″ | ″ | hybridization events |
29 | ″ | ″ | input trees |
30 | ″ | ″ | leaves |
31 | ″ | ″ | new algorithm |
32 | ″ | ″ | new version |
33 | ″ | ″ | number |
34 | ″ | ″ | number of leaves |
35 | ″ | ″ | paper |
36 | ″ | ″ | phylogenetic tree |
37 | ″ | ″ | problem |
38 | ″ | ″ | prunes |
39 | ″ | ″ | purpose |
40 | ″ | ″ | rSPR distance |
41 | ″ | ″ | regraft distance |
42 | ″ | ″ | set |
43 | ″ | ″ | set of species |
44 | ″ | ″ | software |
45 | ″ | ″ | software tools |
46 | ″ | ″ | species |
47 | ″ | ″ | subtree prune |
48 | ″ | ″ | time |
49 | ″ | ″ | tool |
50 | ″ | ″ | trees |
51 | ″ | ″ | version |
52 | ″ | schema:name | Faster Exact Computation of rSPR Distance |
53 | ″ | schema:pagination | 36-47 |
54 | ″ | schema:productId | N561b4ee0aef74d5792c077c8b7e28f3f |
55 | ″ | ″ | Naf3e508c851c4c50b9368cb37c90fe02 |
56 | ″ | schema:publisher | N28b17a64e9d344fd84665d91527a81f0 |
57 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1048239420 |
58 | ″ | ″ | https://doi.org/10.1007/978-3-642-38756-2_7 |
59 | ″ | schema:sdDatePublished | 2022-05-10T10:44 |
60 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
61 | ″ | schema:sdPublisher | N8eecb4bd78b34352b7b795666bba0eb6 |
62 | ″ | schema:url | https://doi.org/10.1007/978-3-642-38756-2_7 |
63 | ″ | sgo:license | sg:explorer/license/ |
64 | ″ | sgo:sdDataset | chapters |
65 | ″ | rdf:type | schema:Chapter |
66 | N06d572afab19449a83a8b7909309a8e7 | rdf:first | Nd553b710bac940a5898dbcbae0afb8b9 |
67 | ″ | rdf:rest | Ne1037b51ddc145d482bc88d3ac9af539 |
68 | N180275c892054275ac8a4fa8ffc0d75f | rdf:first | N21b7f71cce934a2cb65f79555df65487 |
69 | ″ | rdf:rest | N06d572afab19449a83a8b7909309a8e7 |
70 | N21b7f71cce934a2cb65f79555df65487 | schema:familyName | Fellows |
71 | ″ | schema:givenName | Michael |
72 | ″ | rdf:type | schema:Person |
73 | N28b17a64e9d344fd84665d91527a81f0 | schema:name | Springer Nature |
74 | ″ | rdf:type | schema:Organisation |
75 | N3ca9682ee63d4e9985545fd31c9eb256 | schema:familyName | Zhu |
76 | ″ | schema:givenName | Binhai |
77 | ″ | rdf:type | schema:Person |
78 | N561b4ee0aef74d5792c077c8b7e28f3f | schema:name | dimensions_id |
79 | ″ | schema:value | pub.1048239420 |
80 | ″ | rdf:type | schema:PropertyValue |
81 | N82a93aa07ea44a4983f649ea0dbf5b8d | rdf:first | sg:person.01105113721.52 |
82 | ″ | rdf:rest | rdf:nil |
83 | N8eecb4bd78b34352b7b795666bba0eb6 | schema:name | Springer Nature - SN SciGraph project |
84 | ″ | rdf:type | schema:Organization |
85 | N9a2bb6de212c4fe1bcf6ff90dbc6d4a4 | rdf:first | sg:person.015654265661.98 |
86 | ″ | rdf:rest | N82a93aa07ea44a4983f649ea0dbf5b8d |
87 | Naf3e508c851c4c50b9368cb37c90fe02 | schema:name | doi |
88 | ″ | schema:value | 10.1007/978-3-642-38756-2_7 |
89 | ″ | rdf:type | schema:PropertyValue |
90 | Nd553b710bac940a5898dbcbae0afb8b9 | schema:familyName | Tan |
91 | ″ | schema:givenName | Xuehou |
92 | ″ | rdf:type | schema:Person |
93 | Ne1037b51ddc145d482bc88d3ac9af539 | rdf:first | N3ca9682ee63d4e9985545fd31c9eb256 |
94 | ″ | rdf:rest | rdf:nil |
95 | Nf75693b1cb2b4b30add3b07fd190b161 | schema:isbn | 978-3-642-38755-5 |
96 | ″ | ″ | 978-3-642-38756-2 |
97 | ″ | schema:name | Frontiers in Algorithmics and Algorithmic Aspects in Information and Management |
98 | ″ | rdf:type | schema:Book |
99 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
100 | ″ | schema:name | Information and Computing Sciences |
101 | ″ | rdf:type | schema:DefinedTerm |
102 | anzsrc-for:0802 | schema:inDefinedTermSet | anzsrc-for: |
103 | ″ | schema:name | Computation Theory and Mathematics |
104 | ″ | rdf:type | schema:DefinedTerm |
105 | sg:person.01105113721.52 | schema:affiliation | grid-institutes:None |
106 | ″ | schema:familyName | Wang |
107 | ″ | schema:givenName | Lusheng |
108 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105113721.52 |
109 | ″ | rdf:type | schema:Person |
110 | sg:person.015654265661.98 | schema:affiliation | grid-institutes:grid.412773.4 |
111 | ″ | schema:familyName | Chen |
112 | ″ | schema:givenName | Zhi-Zhong |
113 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015654265661.98 |
114 | ″ | rdf:type | schema:Person |
115 | grid-institutes:None | schema:alternateName | Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR |
116 | ″ | schema:name | Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR |
117 | ″ | rdf:type | schema:Organization |
118 | grid-institutes:grid.412773.4 | schema:alternateName | Department of Information System Design, Tokyo Denki University, Hatoyama, 350-0394, Saitama, Japan |
119 | ″ | schema:name | Department of Information System Design, Tokyo Denki University, Hatoyama, 350-0394, Saitama, Japan |
120 | ″ | rdf:type | schema:Organization |