Power Distribution Network Planning Application Based on Multi-Objective Binary Particle Swarm Optimization Algorithm View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013

AUTHORS

José Roberto Bezerra , Giovanni Cordeiro Barroso , Ruth Pastôra Saraiva Leão , Raimundo Furtado , Eudes Barbosa de Medeiros

ABSTRACT

Power distribution networks are the most susceptible sector of the whole electric grid in terms of reliability. Failures along the lines cause the disconnection of a great number of customers what have an immediate impact on quality and security indices. Innovations capable to mitigate impacts or improve reliability are ever pursued by the electric utilities. In view of that, the planning of the modern distribution networks must consider the installation of switches along the network as an important procedure to isolate failures reducing the impact and the number of customers not supplied. However, the complexity and the dimension of the current distribution networks, makes the task of proper allocation of switches strongly dependent on the expertise of engineers. This paper proposes an application based on a Multi-Objective Particle Swarm Optimization algorithm that determines the suitable placement and a feasible number of switches on the power distribution networks in order to minimize the number of customers affected by faults. Detailed information about the algorithm and its application in a test distribution system is presented. The effectiveness of the algorithm is presented in a case study applied to the IEEE 123-Node Test Feeder. More... »

PAGES

258-267

Book

TITLE

Advances in Swarm Intelligence

ISBN

978-3-642-38702-9
978-3-642-38703-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-38703-6_31

DOI

http://dx.doi.org/10.1007/978-3-642-38703-6_31

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013668942


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Instituto Federal do Cear\u00e1, Brazil", 
          "id": "http://www.grid.ac/institutes/grid.461960.c", 
          "name": [
            "Instituto Federal do Cear\u00e1, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bezerra", 
        "givenName": "Jos\u00e9 Roberto", 
        "id": "sg:person.014321036737.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014321036737.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidade Federal do Cear\u00e1, Brazil", 
          "id": "http://www.grid.ac/institutes/grid.8395.7", 
          "name": [
            "Universidade Federal do Cear\u00e1, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barroso", 
        "givenName": "Giovanni Cordeiro", 
        "id": "sg:person.012371261551.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012371261551.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidade Federal do Cear\u00e1, Brazil", 
          "id": "http://www.grid.ac/institutes/grid.8395.7", 
          "name": [
            "Universidade Federal do Cear\u00e1, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Le\u00e3o", 
        "givenName": "Ruth Past\u00f4ra Saraiva", 
        "id": "sg:person.014051323062.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014051323062.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidade Federal do Cear\u00e1, Brazil", 
          "id": "http://www.grid.ac/institutes/grid.8395.7", 
          "name": [
            "Universidade Federal do Cear\u00e1, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Furtado", 
        "givenName": "Raimundo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Companhia Energ\u00e9tica do Cear\u00e1, Brazil", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Companhia Energ\u00e9tica do Cear\u00e1, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Medeiros", 
        "givenName": "Eudes Barbosa", 
        "id": "sg:person.010143511624.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010143511624.35"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "Power distribution networks are the most susceptible sector of the whole electric grid in terms of reliability. Failures along the lines cause the disconnection of a great number of customers what have an immediate impact on quality and security indices. Innovations capable to mitigate impacts or improve reliability are ever pursued by the electric utilities. In view of that, the planning of the modern distribution networks must consider the installation of switches along the network as an important procedure to isolate failures reducing the impact and the number of customers not supplied. However, the complexity and the dimension of the current distribution networks, makes the task of proper allocation of switches strongly dependent on the expertise of engineers. This paper proposes an application based on a Multi-Objective Particle Swarm Optimization algorithm that determines the suitable placement and a feasible number of switches on the power distribution networks in order to minimize the number of customers affected by faults. Detailed information about the algorithm and its application in a test distribution system is presented. The effectiveness of the algorithm is presented in a case study applied to the IEEE 123-Node Test Feeder.", 
    "editor": [
      {
        "familyName": "Tan", 
        "givenName": "Ying", 
        "type": "Person"
      }, 
      {
        "familyName": "Shi", 
        "givenName": "Yuhui", 
        "type": "Person"
      }, 
      {
        "familyName": "Mo", 
        "givenName": "Hongwei", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-38703-6_31", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-38702-9", 
        "978-3-642-38703-6"
      ], 
      "name": "Advances in Swarm Intelligence", 
      "type": "Book"
    }, 
    "keywords": [
      "power distribution network", 
      "distribution network", 
      "particle swarm optimization algorithm", 
      "whole electric grid", 
      "swarm optimization algorithm", 
      "current distribution network", 
      "modern distribution networks", 
      "test distribution system", 
      "multi-objective particle swarm optimization algorithm", 
      "electric grid", 
      "test feeder", 
      "binary particle swarm optimization algorithm", 
      "distribution system", 
      "electric utilities", 
      "optimization algorithm", 
      "number of customers", 
      "terms of reliability", 
      "expertise of engineers", 
      "suitable placement", 
      "applications", 
      "switch", 
      "IEEE", 
      "reliability", 
      "grid", 
      "security index", 
      "installation", 
      "feasible number", 
      "engineers", 
      "algorithm", 
      "faults", 
      "planning applications", 
      "case study", 
      "important procedure", 
      "network", 
      "feeders", 
      "proper allocation", 
      "detailed information", 
      "failure", 
      "system", 
      "order", 
      "impact", 
      "number", 
      "effectiveness", 
      "complexity", 
      "customers", 
      "terms", 
      "dimensions", 
      "quality", 
      "disconnection", 
      "procedure", 
      "allocation", 
      "planning", 
      "placement", 
      "lines", 
      "sector", 
      "study", 
      "task", 
      "information", 
      "immediate impact", 
      "greater number", 
      "utility", 
      "index", 
      "view", 
      "innovation", 
      "expertise", 
      "paper"
    ], 
    "name": "Power Distribution Network Planning Application Based on Multi-Objective Binary Particle Swarm Optimization Algorithm", 
    "pagination": "258-267", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013668942"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-38703-6_31"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-38703-6_31", 
      "https://app.dimensions.ai/details/publication/pub.1013668942"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_4.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-38703-6_31"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-38703-6_31'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-38703-6_31'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-38703-6_31'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-38703-6_31'


 

This table displays all metadata directly associated to this object as RDF triples.

168 TRIPLES      22 PREDICATES      91 URIs      84 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-38703-6_31 schema:about anzsrc-for:09
2 anzsrc-for:0906
3 schema:author Ncc2e5f42c06740a59716d5badaca6d10
4 schema:datePublished 2013
5 schema:datePublishedReg 2013-01-01
6 schema:description Power distribution networks are the most susceptible sector of the whole electric grid in terms of reliability. Failures along the lines cause the disconnection of a great number of customers what have an immediate impact on quality and security indices. Innovations capable to mitigate impacts or improve reliability are ever pursued by the electric utilities. In view of that, the planning of the modern distribution networks must consider the installation of switches along the network as an important procedure to isolate failures reducing the impact and the number of customers not supplied. However, the complexity and the dimension of the current distribution networks, makes the task of proper allocation of switches strongly dependent on the expertise of engineers. This paper proposes an application based on a Multi-Objective Particle Swarm Optimization algorithm that determines the suitable placement and a feasible number of switches on the power distribution networks in order to minimize the number of customers affected by faults. Detailed information about the algorithm and its application in a test distribution system is presented. The effectiveness of the algorithm is presented in a case study applied to the IEEE 123-Node Test Feeder.
7 schema:editor Ne08ad160c8094fd6a91c3d5dd3cf1297
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf Nb5b7f625f710499fa26a264f9481129d
11 schema:keywords IEEE
12 algorithm
13 allocation
14 applications
15 binary particle swarm optimization algorithm
16 case study
17 complexity
18 current distribution network
19 customers
20 detailed information
21 dimensions
22 disconnection
23 distribution network
24 distribution system
25 effectiveness
26 electric grid
27 electric utilities
28 engineers
29 expertise
30 expertise of engineers
31 failure
32 faults
33 feasible number
34 feeders
35 greater number
36 grid
37 immediate impact
38 impact
39 important procedure
40 index
41 information
42 innovation
43 installation
44 lines
45 modern distribution networks
46 multi-objective particle swarm optimization algorithm
47 network
48 number
49 number of customers
50 optimization algorithm
51 order
52 paper
53 particle swarm optimization algorithm
54 placement
55 planning
56 planning applications
57 power distribution network
58 procedure
59 proper allocation
60 quality
61 reliability
62 sector
63 security index
64 study
65 suitable placement
66 swarm optimization algorithm
67 switch
68 system
69 task
70 terms
71 terms of reliability
72 test distribution system
73 test feeder
74 utility
75 view
76 whole electric grid
77 schema:name Power Distribution Network Planning Application Based on Multi-Objective Binary Particle Swarm Optimization Algorithm
78 schema:pagination 258-267
79 schema:productId Nb560ec9f7abd4bfe821b91b9f3e719b8
80 Nc7b406c518674318a554e43d84d8d8b2
81 schema:publisher N7ef2c10e20834342b16cee2055bd30f5
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013668942
83 https://doi.org/10.1007/978-3-642-38703-6_31
84 schema:sdDatePublished 2022-12-01T06:53
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N770ae68b65cd4e4e8ee9c6b40ee65c2c
87 schema:url https://doi.org/10.1007/978-3-642-38703-6_31
88 sgo:license sg:explorer/license/
89 sgo:sdDataset chapters
90 rdf:type schema:Chapter
91 N0080c654f9dc4f8f85bb140e58869c11 rdf:first sg:person.012371261551.34
92 rdf:rest Neac9f12b18d640799852bf62c0e0abae
93 N408e7d3ff40940ad8623d35974ad8af8 rdf:first sg:person.010143511624.35
94 rdf:rest rdf:nil
95 N50b0b8cadf394fc8a039bdc887381530 schema:familyName Tan
96 schema:givenName Ying
97 rdf:type schema:Person
98 N53a5525ba69540be818fdb628297a668 schema:affiliation grid-institutes:grid.8395.7
99 schema:familyName Furtado
100 schema:givenName Raimundo
101 rdf:type schema:Person
102 N62f6e989a10d4e7a9771a77b6957d57d rdf:first N9a664db66a0f403e96752621f674f302
103 rdf:rest Nd7584cb4d84246c6ae09b9cc0f528a1e
104 N770ae68b65cd4e4e8ee9c6b40ee65c2c schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 N7ef2c10e20834342b16cee2055bd30f5 schema:name Springer Nature
107 rdf:type schema:Organisation
108 N7f0dee29728c4de99e51b4e77a7a9b2d schema:familyName Mo
109 schema:givenName Hongwei
110 rdf:type schema:Person
111 N81f8ea74c37c4012ba76991473ac56cb rdf:first N53a5525ba69540be818fdb628297a668
112 rdf:rest N408e7d3ff40940ad8623d35974ad8af8
113 N9a664db66a0f403e96752621f674f302 schema:familyName Shi
114 schema:givenName Yuhui
115 rdf:type schema:Person
116 Nb560ec9f7abd4bfe821b91b9f3e719b8 schema:name dimensions_id
117 schema:value pub.1013668942
118 rdf:type schema:PropertyValue
119 Nb5b7f625f710499fa26a264f9481129d schema:isbn 978-3-642-38702-9
120 978-3-642-38703-6
121 schema:name Advances in Swarm Intelligence
122 rdf:type schema:Book
123 Nc7b406c518674318a554e43d84d8d8b2 schema:name doi
124 schema:value 10.1007/978-3-642-38703-6_31
125 rdf:type schema:PropertyValue
126 Ncc2e5f42c06740a59716d5badaca6d10 rdf:first sg:person.014321036737.93
127 rdf:rest N0080c654f9dc4f8f85bb140e58869c11
128 Nd7584cb4d84246c6ae09b9cc0f528a1e rdf:first N7f0dee29728c4de99e51b4e77a7a9b2d
129 rdf:rest rdf:nil
130 Ne08ad160c8094fd6a91c3d5dd3cf1297 rdf:first N50b0b8cadf394fc8a039bdc887381530
131 rdf:rest N62f6e989a10d4e7a9771a77b6957d57d
132 Neac9f12b18d640799852bf62c0e0abae rdf:first sg:person.014051323062.52
133 rdf:rest N81f8ea74c37c4012ba76991473ac56cb
134 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
135 schema:name Engineering
136 rdf:type schema:DefinedTerm
137 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
138 schema:name Electrical and Electronic Engineering
139 rdf:type schema:DefinedTerm
140 sg:person.010143511624.35 schema:affiliation grid-institutes:None
141 schema:familyName de Medeiros
142 schema:givenName Eudes Barbosa
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010143511624.35
144 rdf:type schema:Person
145 sg:person.012371261551.34 schema:affiliation grid-institutes:grid.8395.7
146 schema:familyName Barroso
147 schema:givenName Giovanni Cordeiro
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012371261551.34
149 rdf:type schema:Person
150 sg:person.014051323062.52 schema:affiliation grid-institutes:grid.8395.7
151 schema:familyName Leão
152 schema:givenName Ruth Pastôra Saraiva
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014051323062.52
154 rdf:type schema:Person
155 sg:person.014321036737.93 schema:affiliation grid-institutes:grid.461960.c
156 schema:familyName Bezerra
157 schema:givenName José Roberto
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014321036737.93
159 rdf:type schema:Person
160 grid-institutes:None schema:alternateName Companhia Energética do Ceará, Brazil
161 schema:name Companhia Energética do Ceará, Brazil
162 rdf:type schema:Organization
163 grid-institutes:grid.461960.c schema:alternateName Instituto Federal do Ceará, Brazil
164 schema:name Instituto Federal do Ceará, Brazil
165 rdf:type schema:Organization
166 grid-institutes:grid.8395.7 schema:alternateName Universidade Federal do Ceará, Brazil
167 schema:name Universidade Federal do Ceará, Brazil
168 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...