New Speed Records for Salsa20 Stream Cipher Using an Autotuning Framework on GPUs View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013

AUTHORS

Ayesha Khalid , Goutam Paul , Anupam Chattopadhyay

ABSTRACT

Since the introduction of the CUDA programming model, GPUs are considered a viable platform for accelerating non-graphical applications. Many cryptographic algorithms have been reported to achieve remarkable performance speedups, especially block ciphers. For stream ciphers, however, the lack of reported GPU acceleration endeavors is due to their inherent iterative structures that prohibit parallelization. In this paper, we propose an efficient implementation methodology for data-parallel cryptographic functions in a batch processing fashion on modern GPUs in general and optimizations for Salsa20 in particular. We present an autotuning framework to reach the most optimized set of device and application parameters for Salsa20 kernel variants with throughput maximization as a figure of merit. The peak performance achieved by our implementation for Salsa20/12 is 2.7 GBps and 43.44 GBps with and without memory transfers respectively on NVIDIA GeForce GTX 590. These figures beat the fastest reported GPU implementation of any stream cipher in the eSTREAM portfolio including Salsa20/12, as well as the block cipher AES optimized by hand-tuning, and thus, to the best of our knowledge set a new speed record. More... »

PAGES

189-207

References to SciGraph publications

  • 2008. The Salsa20 Family of Stream Ciphers in NEW STREAM CIPHER DESIGNS
  • 2013. Optimized GPU Implementation and Performance Analysis of HC Series of Stream Ciphers in INFORMATION SECURITY AND CRYPTOLOGY – ICISC 2012
  • 2008. The Stream Cipher HC-128 in NEW STREAM CIPHER DESIGNS
  • Book

    TITLE

    Progress in Cryptology – AFRICACRYPT 2013

    ISBN

    978-3-642-38552-0
    978-3-642-38553-7

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-642-38553-7_11

    DOI

    http://dx.doi.org/10.1007/978-3-642-38553-7_11

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1033398705


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Data Format", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "RWTH Aachen University", 
              "id": "https://www.grid.ac/institutes/grid.1957.a", 
              "name": [
                "Institute for Communication Technologies and Embedded Systems, RWTH Aachen University, Aachen, 52074, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Khalid", 
            "givenName": "Ayesha", 
            "id": "sg:person.010077216467.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010077216467.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Jadavpur University", 
              "id": "https://www.grid.ac/institutes/grid.216499.1", 
              "name": [
                "Department of Computer Science and Engineering, Jadavpur University, Kolkata, 700 032, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Paul", 
            "givenName": "Goutam", 
            "id": "sg:person.012131006407.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012131006407.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "RWTH Aachen University", 
              "id": "https://www.grid.ac/institutes/grid.1957.a", 
              "name": [
                "Institute for Communication Technologies and Embedded Systems, RWTH Aachen University, Aachen, 52074, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chattopadhyay", 
            "givenName": "Anupam", 
            "id": "sg:person.013725361175.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013725361175.48"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-37682-5_21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006918474", 
              "https://doi.org/10.1007/978-3-642-37682-5_21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-68351-3_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046541781", 
              "https://doi.org/10.1007/978-3-540-68351-3_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-68351-3_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052896772", 
              "https://doi.org/10.1007/978-3-540-68351-3_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpds.2011.311", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061753872"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.15803/ijnc.2.1_131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084351373"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ipdps.2009.5161242", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094621921"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013", 
        "datePublishedReg": "2013-01-01", 
        "description": "Since the introduction of the CUDA programming model, GPUs are considered a viable platform for accelerating non-graphical applications. Many cryptographic algorithms have been reported to achieve remarkable performance speedups, especially block ciphers. For stream ciphers, however, the lack of reported GPU acceleration endeavors is due to their inherent iterative structures that prohibit parallelization. In this paper, we propose an efficient implementation methodology for data-parallel cryptographic functions in a batch processing fashion on modern GPUs in general and optimizations for Salsa20 in particular. We present an autotuning framework to reach the most optimized set of device and application parameters for Salsa20 kernel variants with throughput maximization as a figure of merit. The peak performance achieved by our implementation for Salsa20/12 is 2.7 GBps and 43.44 GBps with and without memory transfers respectively on NVIDIA GeForce GTX 590. These figures beat the fastest reported GPU implementation of any stream cipher in the eSTREAM portfolio including Salsa20/12, as well as the block cipher AES optimized by hand-tuning, and thus, to the best of our knowledge set a new speed record.", 
        "editor": [
          {
            "familyName": "Youssef", 
            "givenName": "Amr", 
            "type": "Person"
          }, 
          {
            "familyName": "Nitaj", 
            "givenName": "Abderrahmane", 
            "type": "Person"
          }, 
          {
            "familyName": "Hassanien", 
            "givenName": "Aboul Ella", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-642-38553-7_11", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-642-38552-0", 
            "978-3-642-38553-7"
          ], 
          "name": "Progress in Cryptology \u2013 AFRICACRYPT 2013", 
          "type": "Book"
        }, 
        "name": "New Speed Records for Salsa20 Stream Cipher Using an Autotuning Framework on GPUs", 
        "pagination": "189-207", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-642-38553-7_11"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "9f1aba54d205d575f8fdbf81d540e2f8beee1204edd292e6c08b663b27b8586a"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1033398705"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-642-38553-7_11", 
          "https://app.dimensions.ai/details/publication/pub.1033398705"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T15:22", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000264.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-642-38553-7_11"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-38553-7_11'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-38553-7_11'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-38553-7_11'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-38553-7_11'


     

    This table displays all metadata directly associated to this object as RDF triples.

    113 TRIPLES      23 PREDICATES      33 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-642-38553-7_11 schema:about anzsrc-for:08
    2 anzsrc-for:0804
    3 schema:author Nc3659b1a24f84679bafb594bad9e20a5
    4 schema:citation sg:pub.10.1007/978-3-540-68351-3_4
    5 sg:pub.10.1007/978-3-540-68351-3_8
    6 sg:pub.10.1007/978-3-642-37682-5_21
    7 https://doi.org/10.1109/ipdps.2009.5161242
    8 https://doi.org/10.1109/tpds.2011.311
    9 https://doi.org/10.15803/ijnc.2.1_131
    10 schema:datePublished 2013
    11 schema:datePublishedReg 2013-01-01
    12 schema:description Since the introduction of the CUDA programming model, GPUs are considered a viable platform for accelerating non-graphical applications. Many cryptographic algorithms have been reported to achieve remarkable performance speedups, especially block ciphers. For stream ciphers, however, the lack of reported GPU acceleration endeavors is due to their inherent iterative structures that prohibit parallelization. In this paper, we propose an efficient implementation methodology for data-parallel cryptographic functions in a batch processing fashion on modern GPUs in general and optimizations for Salsa20 in particular. We present an autotuning framework to reach the most optimized set of device and application parameters for Salsa20 kernel variants with throughput maximization as a figure of merit. The peak performance achieved by our implementation for Salsa20/12 is 2.7 GBps and 43.44 GBps with and without memory transfers respectively on NVIDIA GeForce GTX 590. These figures beat the fastest reported GPU implementation of any stream cipher in the eSTREAM portfolio including Salsa20/12, as well as the block cipher AES optimized by hand-tuning, and thus, to the best of our knowledge set a new speed record.
    13 schema:editor N27057aca92ae4514969af944ebf84ebb
    14 schema:genre chapter
    15 schema:inLanguage en
    16 schema:isAccessibleForFree false
    17 schema:isPartOf Nb1cd385c5dc8417cb84068862a76c72a
    18 schema:name New Speed Records for Salsa20 Stream Cipher Using an Autotuning Framework on GPUs
    19 schema:pagination 189-207
    20 schema:productId N3c947548432444baac26d461733cc039
    21 N8205a2525fd9493f9a5b0b04e4767822
    22 Nd72cee80b807475981c9a3200a109810
    23 schema:publisher N4bd213edc31f473f84463d2f08a39dbd
    24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033398705
    25 https://doi.org/10.1007/978-3-642-38553-7_11
    26 schema:sdDatePublished 2019-04-15T15:22
    27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    28 schema:sdPublisher N73923815715f457dae6e1bb5cef70b5d
    29 schema:url http://link.springer.com/10.1007/978-3-642-38553-7_11
    30 sgo:license sg:explorer/license/
    31 sgo:sdDataset chapters
    32 rdf:type schema:Chapter
    33 N17f25a33330e49e695272f9b0f162886 rdf:first N57719ea24c4d46d7a868268757fa56b0
    34 rdf:rest N3b595966572244bbad59f4b75f49d562
    35 N27057aca92ae4514969af944ebf84ebb rdf:first Nab0edc98efea4eb89547fd149a51acdf
    36 rdf:rest N17f25a33330e49e695272f9b0f162886
    37 N3b595966572244bbad59f4b75f49d562 rdf:first N5b99a717852b4b05a215cc345e6b139a
    38 rdf:rest rdf:nil
    39 N3c947548432444baac26d461733cc039 schema:name readcube_id
    40 schema:value 9f1aba54d205d575f8fdbf81d540e2f8beee1204edd292e6c08b663b27b8586a
    41 rdf:type schema:PropertyValue
    42 N4bd213edc31f473f84463d2f08a39dbd schema:location Berlin, Heidelberg
    43 schema:name Springer Berlin Heidelberg
    44 rdf:type schema:Organisation
    45 N57719ea24c4d46d7a868268757fa56b0 schema:familyName Nitaj
    46 schema:givenName Abderrahmane
    47 rdf:type schema:Person
    48 N5b99a717852b4b05a215cc345e6b139a schema:familyName Hassanien
    49 schema:givenName Aboul Ella
    50 rdf:type schema:Person
    51 N73923815715f457dae6e1bb5cef70b5d schema:name Springer Nature - SN SciGraph project
    52 rdf:type schema:Organization
    53 N8205a2525fd9493f9a5b0b04e4767822 schema:name doi
    54 schema:value 10.1007/978-3-642-38553-7_11
    55 rdf:type schema:PropertyValue
    56 N98b073233d6e4f3083d003cd1fcb5189 rdf:first sg:person.013725361175.48
    57 rdf:rest rdf:nil
    58 Nab0edc98efea4eb89547fd149a51acdf schema:familyName Youssef
    59 schema:givenName Amr
    60 rdf:type schema:Person
    61 Nb1cd385c5dc8417cb84068862a76c72a schema:isbn 978-3-642-38552-0
    62 978-3-642-38553-7
    63 schema:name Progress in Cryptology – AFRICACRYPT 2013
    64 rdf:type schema:Book
    65 Nc3659b1a24f84679bafb594bad9e20a5 rdf:first sg:person.010077216467.32
    66 rdf:rest Nee3c10181e8c43f38ccd4e8ae4959f90
    67 Nd72cee80b807475981c9a3200a109810 schema:name dimensions_id
    68 schema:value pub.1033398705
    69 rdf:type schema:PropertyValue
    70 Nee3c10181e8c43f38ccd4e8ae4959f90 rdf:first sg:person.012131006407.38
    71 rdf:rest N98b073233d6e4f3083d003cd1fcb5189
    72 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    73 schema:name Information and Computing Sciences
    74 rdf:type schema:DefinedTerm
    75 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Data Format
    77 rdf:type schema:DefinedTerm
    78 sg:person.010077216467.32 schema:affiliation https://www.grid.ac/institutes/grid.1957.a
    79 schema:familyName Khalid
    80 schema:givenName Ayesha
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010077216467.32
    82 rdf:type schema:Person
    83 sg:person.012131006407.38 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
    84 schema:familyName Paul
    85 schema:givenName Goutam
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012131006407.38
    87 rdf:type schema:Person
    88 sg:person.013725361175.48 schema:affiliation https://www.grid.ac/institutes/grid.1957.a
    89 schema:familyName Chattopadhyay
    90 schema:givenName Anupam
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013725361175.48
    92 rdf:type schema:Person
    93 sg:pub.10.1007/978-3-540-68351-3_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046541781
    94 https://doi.org/10.1007/978-3-540-68351-3_4
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1007/978-3-540-68351-3_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052896772
    97 https://doi.org/10.1007/978-3-540-68351-3_8
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1007/978-3-642-37682-5_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006918474
    100 https://doi.org/10.1007/978-3-642-37682-5_21
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1109/ipdps.2009.5161242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094621921
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1109/tpds.2011.311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061753872
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.15803/ijnc.2.1_131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084351373
    107 rdf:type schema:CreativeWork
    108 https://www.grid.ac/institutes/grid.1957.a schema:alternateName RWTH Aachen University
    109 schema:name Institute for Communication Technologies and Embedded Systems, RWTH Aachen University, Aachen, 52074, Germany
    110 rdf:type schema:Organization
    111 https://www.grid.ac/institutes/grid.216499.1 schema:alternateName Jadavpur University
    112 schema:name Department of Computer Science and Engineering, Jadavpur University, Kolkata, 700 032, India
    113 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...