Online Social Networks Flu Trend Tracker: A Novel Sensory Approach to Predict Flu Trends View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2013

AUTHORS

Harshavardhan Achrekar , Avinash Gandhe , Ross Lazarus , Ssu-Hsin Yu , Benyuan Liu

ABSTRACT

Seasonal influenza epidemics cause several million cases of illnesses cases and about 250,000 to 500,000 deaths worldwide each year. Other pandemics like the 1918 “Spanish Flu” may change into devastating event. Reducing the impact of these threats is of paramount importance for health authorities, and studies have shown that effective interventions can be taken to contain the epidemics, if early detection can be made. In this paper, we introduce Social Network Enabled Flu Trends (SNEFT), a continuous data collection framework which monitors flu related messages on online social networks such as Twitter and Facebook and track the emergence and spread of an influenza. We show that text mining significantly enhances the correlation between online social network(OSN) data and the Influenza like Illness (ILI) rates provided by Centers for Disease Control and Prevention (CDC). For accurate prediction, we implemented an auto-regression with exogenous input (ARX) model which uses current OSN data and CDC ILI rates from previous weeks to predict current influenza statistics. Our results show that, while previous ILI data from the CDC offer a true (but delayed) assessment of a flu epidemic, OSN data provides a real-time assessment of the current epidemic condition and can be used to compensate for the lack of current ILI data. We observe that the OSN data is highly correlated with the ILI rates across different regions within USA and can be used to effectively improve the accuracy of our prediction. Therefore, OSN data can act as supplementary indicator to gauge influenza within a population and helps to discover flu trends ahead of CDC. More... »

PAGES

353-368

Book

TITLE

Biomedical Engineering Systems and Technologies

ISBN

978-3-642-38255-0
978-3-642-38256-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-38256-7_24

DOI

http://dx.doi.org/10.1007/978-3-642-38256-7_24

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040019710


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Massachusetts Lowell", 
          "id": "https://www.grid.ac/institutes/grid.225262.3", 
          "name": [
            "Department of Computer Science, University of Massachusetts Lowell, Massachusetts, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Achrekar", 
        "givenName": "Harshavardhan", 
        "id": "sg:person.07472241641.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07472241641.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Scientific Systems (United States)", 
          "id": "https://www.grid.ac/institutes/grid.456096.8", 
          "name": [
            "Scientific Systems Company Inc, 500 West Cummings Park, Woburn, Massachusetts, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gandhe", 
        "givenName": "Avinash", 
        "id": "sg:person.011753755427.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011753755427.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Population Medicine, Harvard Medical School, Boston, Massachusetts, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lazarus", 
        "givenName": "Ross", 
        "id": "sg:person.0766744011.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766744011.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Scientific Systems (United States)", 
          "id": "https://www.grid.ac/institutes/grid.456096.8", 
          "name": [
            "Scientific Systems Company Inc, 500 West Cummings Park, Woburn, Massachusetts, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Ssu-Hsin", 
        "id": "sg:person.07360030533.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07360030533.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Massachusetts Lowell", 
          "id": "https://www.grid.ac/institutes/grid.225262.3", 
          "name": [
            "Department of Computer Science, University of Massachusetts Lowell, Massachusetts, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Benyuan", 
        "id": "sg:person.01023774130.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023774130.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature04017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004855651", 
          "https://doi.org/10.1038/nature04017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004855651", 
          "https://doi.org/10.1038/nature04017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004855651", 
          "https://doi.org/10.1038/nature04017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005138990", 
          "https://doi.org/10.1038/nature07634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/infcomw.2011.5928903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005424666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3201/eid0808.020239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011625286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1772690.1772777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026844486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/asi.21149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033141795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/asi.21149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033141795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1810931.1810935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034605764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0019467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049659864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1557019.1557077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053219210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mnet.2010.5578917", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061411684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1115717", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062452473"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "Seasonal influenza epidemics cause several million cases of illnesses cases and about 250,000 to 500,000 deaths worldwide each year. Other pandemics like the 1918 \u201cSpanish Flu\u201d may change into devastating event. Reducing the impact of these threats is of paramount importance for health authorities, and studies have shown that effective interventions can be taken to contain the epidemics, if early detection can be made. In this paper, we introduce Social Network Enabled Flu Trends (SNEFT), a continuous data collection framework which monitors flu related messages on online social networks such as Twitter and Facebook and track the emergence and spread of an influenza. We show that text mining significantly enhances the correlation between online social network(OSN) data and the Influenza like Illness (ILI) rates provided by Centers for Disease Control and Prevention (CDC). For accurate prediction, we implemented an auto-regression with exogenous input (ARX) model which uses current OSN data and CDC ILI rates from previous weeks to predict current influenza statistics. Our results show that, while previous ILI data from the CDC offer a true (but delayed) assessment of a flu epidemic, OSN data provides a real-time assessment of the current epidemic condition and can be used to compensate for the lack of current ILI data. We observe that the OSN data is highly correlated with the ILI rates across different regions within USA and can be used to effectively improve the accuracy of our prediction. Therefore, OSN data can act as supplementary indicator to gauge influenza within a population and helps to discover flu trends ahead of CDC.", 
    "editor": [
      {
        "familyName": "Gabriel", 
        "givenName": "Joaquim", 
        "type": "Person"
      }, 
      {
        "familyName": "Schier", 
        "givenName": "Jan", 
        "type": "Person"
      }, 
      {
        "familyName": "Van Huffel", 
        "givenName": "Sabine", 
        "type": "Person"
      }, 
      {
        "familyName": "Conchon", 
        "givenName": "Emmanuel", 
        "type": "Person"
      }, 
      {
        "familyName": "Correia", 
        "givenName": "Carlos", 
        "type": "Person"
      }, 
      {
        "familyName": "Fred", 
        "givenName": "Ana", 
        "type": "Person"
      }, 
      {
        "familyName": "Gamboa", 
        "givenName": "Hugo", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-38256-7_24", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-38255-0", 
        "978-3-642-38256-7"
      ], 
      "name": "Biomedical Engineering Systems and Technologies", 
      "type": "Book"
    }, 
    "name": "Online Social Networks Flu Trend Tracker: A Novel Sensory Approach to Predict Flu Trends", 
    "pagination": "353-368", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-38256-7_24"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bea38f4439c596f836c46bdbd1fe9c04d578d299289c07ad3f96936807e0de2a"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040019710"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-38256-7_24", 
      "https://app.dimensions.ai/details/publication/pub.1040019710"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T10:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000268.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-38256-7_24"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-38256-7_24'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-38256-7_24'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-38256-7_24'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-38256-7_24'


 

This table displays all metadata directly associated to this object as RDF triples.

164 TRIPLES      23 PREDICATES      38 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-38256-7_24 schema:about anzsrc-for:11
2 anzsrc-for:1117
3 schema:author Nbe1b282c0a9941ada6d81f8a5ee79a94
4 schema:citation sg:pub.10.1038/nature04017
5 sg:pub.10.1038/nature07634
6 https://doi.org/10.1002/asi.21149
7 https://doi.org/10.1109/infcomw.2011.5928903
8 https://doi.org/10.1109/mnet.2010.5578917
9 https://doi.org/10.1126/science.1115717
10 https://doi.org/10.1145/1557019.1557077
11 https://doi.org/10.1145/1772690.1772777
12 https://doi.org/10.1145/1810931.1810935
13 https://doi.org/10.1371/journal.pone.0019467
14 https://doi.org/10.3201/eid0808.020239
15 schema:datePublished 2013
16 schema:datePublishedReg 2013-01-01
17 schema:description Seasonal influenza epidemics cause several million cases of illnesses cases and about 250,000 to 500,000 deaths worldwide each year. Other pandemics like the 1918 “Spanish Flu” may change into devastating event. Reducing the impact of these threats is of paramount importance for health authorities, and studies have shown that effective interventions can be taken to contain the epidemics, if early detection can be made. In this paper, we introduce Social Network Enabled Flu Trends (SNEFT), a continuous data collection framework which monitors flu related messages on online social networks such as Twitter and Facebook and track the emergence and spread of an influenza. We show that text mining significantly enhances the correlation between online social network(OSN) data and the Influenza like Illness (ILI) rates provided by Centers for Disease Control and Prevention (CDC). For accurate prediction, we implemented an auto-regression with exogenous input (ARX) model which uses current OSN data and CDC ILI rates from previous weeks to predict current influenza statistics. Our results show that, while previous ILI data from the CDC offer a true (but delayed) assessment of a flu epidemic, OSN data provides a real-time assessment of the current epidemic condition and can be used to compensate for the lack of current ILI data. We observe that the OSN data is highly correlated with the ILI rates across different regions within USA and can be used to effectively improve the accuracy of our prediction. Therefore, OSN data can act as supplementary indicator to gauge influenza within a population and helps to discover flu trends ahead of CDC.
18 schema:editor N0e919466420a45f59cc8efab71f6080e
19 schema:genre chapter
20 schema:inLanguage en
21 schema:isAccessibleForFree true
22 schema:isPartOf Ne9b37e760f9f468abb6afcb3af4d0442
23 schema:name Online Social Networks Flu Trend Tracker: A Novel Sensory Approach to Predict Flu Trends
24 schema:pagination 353-368
25 schema:productId N75a5f421f312470aa294b0806ad42009
26 Na258dd4625f248148730b5bf57ca88ea
27 Nc87a2c175ab3494a86d0c110887d076b
28 schema:publisher N0deb5582e16642e2bd8d4bcf2386f235
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040019710
30 https://doi.org/10.1007/978-3-642-38256-7_24
31 schema:sdDatePublished 2019-04-15T10:36
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N27069b6b2d5e494aa7b573884832b234
34 schema:url http://link.springer.com/10.1007/978-3-642-38256-7_24
35 sgo:license sg:explorer/license/
36 sgo:sdDataset chapters
37 rdf:type schema:Chapter
38 N004f5b28e62b4eb6a325356f59c07e5c schema:familyName Schier
39 schema:givenName Jan
40 rdf:type schema:Person
41 N03d27ad2d4db41e3a1ae0a698626112b schema:familyName Van Huffel
42 schema:givenName Sabine
43 rdf:type schema:Person
44 N0deb5582e16642e2bd8d4bcf2386f235 schema:location Berlin, Heidelberg
45 schema:name Springer Berlin Heidelberg
46 rdf:type schema:Organisation
47 N0e919466420a45f59cc8efab71f6080e rdf:first Ne1e8315b34c746f19c30d12603542d6e
48 rdf:rest N8fff772827804b41b1cedbcbbfa0f932
49 N1690a520dafd4762b5ed07fbf8f046c5 schema:familyName Fred
50 schema:givenName Ana
51 rdf:type schema:Person
52 N27069b6b2d5e494aa7b573884832b234 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N2da1961a903043d096ed2a0f9a895c77 schema:familyName Correia
55 schema:givenName Carlos
56 rdf:type schema:Person
57 N37ac1afa118348eb8276a72fddf768b1 rdf:first Ncd71c43f0dd646a795b33826385bc8f8
58 rdf:rest N9947e23fbe034c51bdb4123f134e30da
59 N37ca387b086242a288a4573733787478 rdf:first N03d27ad2d4db41e3a1ae0a698626112b
60 rdf:rest N37ac1afa118348eb8276a72fddf768b1
61 N75a5f421f312470aa294b0806ad42009 schema:name doi
62 schema:value 10.1007/978-3-642-38256-7_24
63 rdf:type schema:PropertyValue
64 N8fff772827804b41b1cedbcbbfa0f932 rdf:first N004f5b28e62b4eb6a325356f59c07e5c
65 rdf:rest N37ca387b086242a288a4573733787478
66 N9667818a28e94dd99a39eb2b1aa53363 rdf:first Nd818ff17ce8c4a0b8a8546d1efe59300
67 rdf:rest rdf:nil
68 N9947e23fbe034c51bdb4123f134e30da rdf:first N2da1961a903043d096ed2a0f9a895c77
69 rdf:rest Nf9404631e05547b096d1bd365e7ed342
70 Na258dd4625f248148730b5bf57ca88ea schema:name dimensions_id
71 schema:value pub.1040019710
72 rdf:type schema:PropertyValue
73 Nbe1b282c0a9941ada6d81f8a5ee79a94 rdf:first sg:person.07472241641.91
74 rdf:rest Nef584c0130c145bfbece680039719d91
75 Nbf26b84bc3a94897a132ab03aff89c0a rdf:first sg:person.07360030533.48
76 rdf:rest Ne75a44a3ad5842a89b604c32181f2b43
77 Nc87a2c175ab3494a86d0c110887d076b schema:name readcube_id
78 schema:value bea38f4439c596f836c46bdbd1fe9c04d578d299289c07ad3f96936807e0de2a
79 rdf:type schema:PropertyValue
80 Ncd71c43f0dd646a795b33826385bc8f8 schema:familyName Conchon
81 schema:givenName Emmanuel
82 rdf:type schema:Person
83 Nd818ff17ce8c4a0b8a8546d1efe59300 schema:familyName Gamboa
84 schema:givenName Hugo
85 rdf:type schema:Person
86 Ndb752a6d50bd48218945dadf897cd8f5 rdf:first sg:person.0766744011.63
87 rdf:rest Nbf26b84bc3a94897a132ab03aff89c0a
88 Ne1e8315b34c746f19c30d12603542d6e schema:familyName Gabriel
89 schema:givenName Joaquim
90 rdf:type schema:Person
91 Ne75a44a3ad5842a89b604c32181f2b43 rdf:first sg:person.01023774130.27
92 rdf:rest rdf:nil
93 Ne9b37e760f9f468abb6afcb3af4d0442 schema:isbn 978-3-642-38255-0
94 978-3-642-38256-7
95 schema:name Biomedical Engineering Systems and Technologies
96 rdf:type schema:Book
97 Nef584c0130c145bfbece680039719d91 rdf:first sg:person.011753755427.93
98 rdf:rest Ndb752a6d50bd48218945dadf897cd8f5
99 Nf9404631e05547b096d1bd365e7ed342 rdf:first N1690a520dafd4762b5ed07fbf8f046c5
100 rdf:rest N9667818a28e94dd99a39eb2b1aa53363
101 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
102 schema:name Medical and Health Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
105 schema:name Public Health and Health Services
106 rdf:type schema:DefinedTerm
107 sg:person.01023774130.27 schema:affiliation https://www.grid.ac/institutes/grid.225262.3
108 schema:familyName Liu
109 schema:givenName Benyuan
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023774130.27
111 rdf:type schema:Person
112 sg:person.011753755427.93 schema:affiliation https://www.grid.ac/institutes/grid.456096.8
113 schema:familyName Gandhe
114 schema:givenName Avinash
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011753755427.93
116 rdf:type schema:Person
117 sg:person.07360030533.48 schema:affiliation https://www.grid.ac/institutes/grid.456096.8
118 schema:familyName Yu
119 schema:givenName Ssu-Hsin
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07360030533.48
121 rdf:type schema:Person
122 sg:person.07472241641.91 schema:affiliation https://www.grid.ac/institutes/grid.225262.3
123 schema:familyName Achrekar
124 schema:givenName Harshavardhan
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07472241641.91
126 rdf:type schema:Person
127 sg:person.0766744011.63 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
128 schema:familyName Lazarus
129 schema:givenName Ross
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766744011.63
131 rdf:type schema:Person
132 sg:pub.10.1038/nature04017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004855651
133 https://doi.org/10.1038/nature04017
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/nature07634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005138990
136 https://doi.org/10.1038/nature07634
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1002/asi.21149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033141795
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/infcomw.2011.5928903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005424666
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/mnet.2010.5578917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061411684
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1126/science.1115717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062452473
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1145/1557019.1557077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053219210
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1145/1772690.1772777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026844486
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1145/1810931.1810935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034605764
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1371/journal.pone.0019467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049659864
153 rdf:type schema:CreativeWork
154 https://doi.org/10.3201/eid0808.020239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011625286
155 rdf:type schema:CreativeWork
156 https://www.grid.ac/institutes/grid.225262.3 schema:alternateName University of Massachusetts Lowell
157 schema:name Department of Computer Science, University of Massachusetts Lowell, Massachusetts, U.S.A.
158 rdf:type schema:Organization
159 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
160 schema:name Department of Population Medicine, Harvard Medical School, Boston, Massachusetts, U.S.A.
161 rdf:type schema:Organization
162 https://www.grid.ac/institutes/grid.456096.8 schema:alternateName Scientific Systems (United States)
163 schema:name Scientific Systems Company Inc, 500 West Cummings Park, Woburn, Massachusetts, U.S.A.
164 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...