Automatic Detection and Quantification of Mitral Regurgitation on TTE with Application to Assist Mitral Clip Planning and Evaluation View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013

AUTHORS

Yang Wang , Dime Vitanovski , Bogdan Georgescu , Razvan Ionasec , Ingmar Voigt , Saurabh Datta , Christiane Gruner , Bernhard Herzog , Patric Biaggi , Gareth Funka-Lea , Dorin Comaniciu

ABSTRACT

Mitral regurgitation (MR), characterized by reverse blood flow during systole, is one of the most common valvular heart diseases. It typically requires treatment via surgical (mitral valve replacement or repair) or percutaneous approaches (e.g., MitraClip). To assist clinical diagnosis and assessment, we propose a learning-based framework to automatically detect and quantify mitral regurgitation from transthoracic echocardiography (TTE), which is usually the initial method to evaluate the cardiac and valve function. Our method leverages both anatomical (B-Mode) and hemodynamical (Color Doppler) information by extracting 3D features on multiple channels and selecting the most relevant ones by a boosting-based approach. Furthermore, the proposed framework provides an automatic modeling of mitral valve structures, such as the location of the regurgitant orifice, the mitral annulus, and the mitral valve closure line, which can be used to assist medical treatment or interventions. To demonstrate the performance of our method, we evaluate the system on a clinical dataset acquired from MR patients. Preliminary results agree well with clinical measurements in a quantitative manner. More... »

PAGES

33-41

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-38079-2_5

DOI

http://dx.doi.org/10.1007/978-3-642-38079-2_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009928573


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Research, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yang", 
        "id": "sg:person.01356704511.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356704511.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Research, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vitanovski", 
        "givenName": "Dime", 
        "id": "sg:person.01242456111.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242456111.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Research, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Georgescu", 
        "givenName": "Bogdan", 
        "id": "sg:person.0703547214.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Research, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ionasec", 
        "givenName": "Razvan", 
        "id": "sg:person.01010560470.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010560470.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Research, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Voigt", 
        "givenName": "Ingmar", 
        "id": "sg:person.0751662414.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751662414.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Ultrasound, Mountain View, CA, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Siemens Ultrasound, Mountain View, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Datta", 
        "givenName": "Saurabh", 
        "id": "sg:person.0673414055.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673414055.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cardiovascular Center, University Hospital, Zurich, Switzerland", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Cardiovascular Center, University Hospital, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gruner", 
        "givenName": "Christiane", 
        "id": "sg:person.01300352106.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300352106.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cardiovascular Center, University Hospital, Zurich, Switzerland", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Cardiovascular Center, University Hospital, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Herzog", 
        "givenName": "Bernhard", 
        "id": "sg:person.0736546761.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736546761.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cardiovascular Center, University Hospital, Zurich, Switzerland", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Cardiovascular Center, University Hospital, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Biaggi", 
        "givenName": "Patric", 
        "id": "sg:person.0645046407.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645046407.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Research, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Funka-Lea", 
        "givenName": "Gareth", 
        "id": "sg:person.0734140604.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734140604.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Research, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Comaniciu", 
        "givenName": "Dorin", 
        "id": "sg:person.01066111014.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "Mitral regurgitation (MR), characterized by reverse blood flow during systole, is one of the most common valvular heart diseases. It typically requires treatment via surgical (mitral valve replacement or repair) or percutaneous approaches (e.g., MitraClip). To assist clinical diagnosis and assessment, we propose a learning-based framework to automatically detect and quantify mitral regurgitation from transthoracic echocardiography (TTE), which is usually the initial method to evaluate the cardiac and valve function. Our method leverages both anatomical (B-Mode) and hemodynamical (Color Doppler) information by extracting 3D features on multiple channels and selecting the most relevant ones by a boosting-based approach. Furthermore, the proposed framework provides an automatic modeling of mitral valve structures, such as the location of the regurgitant orifice, the mitral annulus, and the mitral valve closure line, which can be used to assist medical treatment or interventions. To demonstrate the performance of our method, we evaluate the system on a clinical dataset acquired from MR patients. Preliminary results agree well with clinical measurements in a quantitative manner.", 
    "editor": [
      {
        "familyName": "Drechsler", 
        "givenName": "Klaus", 
        "type": "Person"
      }, 
      {
        "familyName": "Erdt", 
        "givenName": "Marius", 
        "type": "Person"
      }, 
      {
        "familyName": "Linguraru", 
        "givenName": "Marius George", 
        "type": "Person"
      }, 
      {
        "familyName": "Oyarzun Laura", 
        "givenName": "Cristina", 
        "type": "Person"
      }, 
      {
        "familyName": "Sharma", 
        "givenName": "Karun", 
        "type": "Person"
      }, 
      {
        "familyName": "Shekhar", 
        "givenName": "Raj", 
        "type": "Person"
      }, 
      {
        "familyName": "Wesarg", 
        "givenName": "Stefan", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-38079-2_5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-38078-5", 
        "978-3-642-38079-2"
      ], 
      "name": "Clinical Image-Based Procedures. From Planning to Intervention", 
      "type": "Book"
    }, 
    "keywords": [
      "mitral regurgitation", 
      "transthoracic echocardiography", 
      "common valvular heart disease", 
      "valvular heart disease", 
      "reverse blood flow", 
      "mitral valve structure", 
      "percutaneous approach", 
      "heart disease", 
      "mitral annulus", 
      "blood flow", 
      "MR patients", 
      "medical treatment", 
      "clinical diagnosis", 
      "clinical measurements", 
      "regurgitation", 
      "boosting-based approach", 
      "regurgitant orifice", 
      "learning-based framework", 
      "closure line", 
      "treatment", 
      "automatic modeling", 
      "automatic detection", 
      "initial method", 
      "clinical datasets", 
      "echocardiography", 
      "patients", 
      "disease", 
      "multiple channels", 
      "diagnosis", 
      "systole", 
      "relevant ones", 
      "intervention", 
      "preliminary results", 
      "valve structure", 
      "assessment", 
      "framework", 
      "orifice", 
      "evaluation", 
      "datasets", 
      "annulus", 
      "manner", 
      "function", 
      "method", 
      "information", 
      "lines", 
      "planning", 
      "detection", 
      "applications", 
      "performance", 
      "quantification", 
      "features", 
      "quantitative manner", 
      "modeling", 
      "results", 
      "system", 
      "approach", 
      "location", 
      "channels", 
      "measurements", 
      "flow", 
      "one", 
      "structure", 
      "hemodynamical (Color Doppler) information", 
      "mitral valve closure line", 
      "valve closure line", 
      "Mitral Clip Planning", 
      "Clip Planning"
    ], 
    "name": "Automatic Detection and Quantification of Mitral Regurgitation on TTE with Application to Assist Mitral Clip Planning and Evaluation", 
    "pagination": "33-41", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009928573"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-38079-2_5"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-38079-2_5", 
      "https://app.dimensions.ai/details/publication/pub.1009928573"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_135.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-38079-2_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-38079-2_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-38079-2_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-38079-2_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-38079-2_5'


 

This table displays all metadata directly associated to this object as RDF triples.

232 TRIPLES      23 PREDICATES      93 URIs      86 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-38079-2_5 schema:about anzsrc-for:11
2 anzsrc-for:1102
3 schema:author N97412f6871c145c39ba1e3580fcf16da
4 schema:datePublished 2013
5 schema:datePublishedReg 2013-01-01
6 schema:description Mitral regurgitation (MR), characterized by reverse blood flow during systole, is one of the most common valvular heart diseases. It typically requires treatment via surgical (mitral valve replacement or repair) or percutaneous approaches (e.g., MitraClip). To assist clinical diagnosis and assessment, we propose a learning-based framework to automatically detect and quantify mitral regurgitation from transthoracic echocardiography (TTE), which is usually the initial method to evaluate the cardiac and valve function. Our method leverages both anatomical (B-Mode) and hemodynamical (Color Doppler) information by extracting 3D features on multiple channels and selecting the most relevant ones by a boosting-based approach. Furthermore, the proposed framework provides an automatic modeling of mitral valve structures, such as the location of the regurgitant orifice, the mitral annulus, and the mitral valve closure line, which can be used to assist medical treatment or interventions. To demonstrate the performance of our method, we evaluate the system on a clinical dataset acquired from MR patients. Preliminary results agree well with clinical measurements in a quantitative manner.
7 schema:editor Ne09f036a32a54fb9a929bbabb68d566b
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N80f92b51a41b4247abac00a6492ae8f6
12 schema:keywords Clip Planning
13 MR patients
14 Mitral Clip Planning
15 annulus
16 applications
17 approach
18 assessment
19 automatic detection
20 automatic modeling
21 blood flow
22 boosting-based approach
23 channels
24 clinical datasets
25 clinical diagnosis
26 clinical measurements
27 closure line
28 common valvular heart disease
29 datasets
30 detection
31 diagnosis
32 disease
33 echocardiography
34 evaluation
35 features
36 flow
37 framework
38 function
39 heart disease
40 hemodynamical (Color Doppler) information
41 information
42 initial method
43 intervention
44 learning-based framework
45 lines
46 location
47 manner
48 measurements
49 medical treatment
50 method
51 mitral annulus
52 mitral regurgitation
53 mitral valve closure line
54 mitral valve structure
55 modeling
56 multiple channels
57 one
58 orifice
59 patients
60 percutaneous approach
61 performance
62 planning
63 preliminary results
64 quantification
65 quantitative manner
66 regurgitant orifice
67 regurgitation
68 relevant ones
69 results
70 reverse blood flow
71 structure
72 system
73 systole
74 transthoracic echocardiography
75 treatment
76 valve closure line
77 valve structure
78 valvular heart disease
79 schema:name Automatic Detection and Quantification of Mitral Regurgitation on TTE with Application to Assist Mitral Clip Planning and Evaluation
80 schema:pagination 33-41
81 schema:productId N22fdfad4da9e4b85b2fd1c56513fcd82
82 N2e8d317777dd426484beb9895a6dae4d
83 schema:publisher Ne8df5639aecd4066b48261931ef46887
84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009928573
85 https://doi.org/10.1007/978-3-642-38079-2_5
86 schema:sdDatePublished 2022-01-01T19:08
87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
88 schema:sdPublisher Neeccf7bfc1574bd7bb158ead86bd7232
89 schema:url https://doi.org/10.1007/978-3-642-38079-2_5
90 sgo:license sg:explorer/license/
91 sgo:sdDataset chapters
92 rdf:type schema:Chapter
93 N0062eac9701247cb8f784ff5cc161ba2 rdf:first sg:person.0736546761.91
94 rdf:rest Nf5c47a2a59b1475fb44a6bbdf83758e4
95 N0216cc8adbb847cbbeb99a2bee9a396a rdf:first sg:person.0703547214.37
96 rdf:rest Ne077ba3f661749539434e0682f8479d0
97 N1d7ac109c12a4712b35b63f6d784a4ea rdf:first Na6c197368c464f89bd75802b4941aa4b
98 rdf:rest N77cf2bab15ec49b587d8230a134672fc
99 N1d90a5e4a593458ba1065fc272755c56 rdf:first N5840c47f8f8444b49b273c5b0cb90659
100 rdf:rest N1d7ac109c12a4712b35b63f6d784a4ea
101 N22fdfad4da9e4b85b2fd1c56513fcd82 schema:name doi
102 schema:value 10.1007/978-3-642-38079-2_5
103 rdf:type schema:PropertyValue
104 N2406c92bc3a5431aa4d9f67514c136ba rdf:first Nfa52852a2f274b0dae04c7de63c6bd1c
105 rdf:rest Nbc67d27d45ff459ca1eb93ae656cc5f9
106 N2e8d317777dd426484beb9895a6dae4d schema:name dimensions_id
107 schema:value pub.1009928573
108 rdf:type schema:PropertyValue
109 N45c158c577774bb9a85d30ff0c2dc0f5 schema:familyName Wesarg
110 schema:givenName Stefan
111 rdf:type schema:Person
112 N53f5bb44dcc34108b6f543cec429ed99 schema:familyName Linguraru
113 schema:givenName Marius George
114 rdf:type schema:Person
115 N5840c47f8f8444b49b273c5b0cb90659 schema:familyName Oyarzun Laura
116 schema:givenName Cristina
117 rdf:type schema:Person
118 N68e7139a3e42412ea9e4694196c1e01f schema:familyName Shekhar
119 schema:givenName Raj
120 rdf:type schema:Person
121 N77cf2bab15ec49b587d8230a134672fc rdf:first N68e7139a3e42412ea9e4694196c1e01f
122 rdf:rest Naa94ac772115450fbf421e6fed77675b
123 N80f92b51a41b4247abac00a6492ae8f6 schema:isbn 978-3-642-38078-5
124 978-3-642-38079-2
125 schema:name Clinical Image-Based Procedures. From Planning to Intervention
126 rdf:type schema:Book
127 N86d0e66c58c74e98a43d265b99f33d20 rdf:first sg:person.01300352106.09
128 rdf:rest N0062eac9701247cb8f784ff5cc161ba2
129 N8e436924e4e4403582a59007e61b14a2 rdf:first sg:person.01242456111.33
130 rdf:rest N0216cc8adbb847cbbeb99a2bee9a396a
131 N94b92cf000d4416f91c5b5eead795214 rdf:first sg:person.0751662414.66
132 rdf:rest Nd80591003dd449fabf52ce12d900fcb0
133 N97412f6871c145c39ba1e3580fcf16da rdf:first sg:person.01356704511.13
134 rdf:rest N8e436924e4e4403582a59007e61b14a2
135 Na6c197368c464f89bd75802b4941aa4b schema:familyName Sharma
136 schema:givenName Karun
137 rdf:type schema:Person
138 Naa94ac772115450fbf421e6fed77675b rdf:first N45c158c577774bb9a85d30ff0c2dc0f5
139 rdf:rest rdf:nil
140 Nb500dbd1fe3e4f67be62f29d242bfd0a schema:familyName Drechsler
141 schema:givenName Klaus
142 rdf:type schema:Person
143 Nbc67d27d45ff459ca1eb93ae656cc5f9 rdf:first N53f5bb44dcc34108b6f543cec429ed99
144 rdf:rest N1d90a5e4a593458ba1065fc272755c56
145 Nd80591003dd449fabf52ce12d900fcb0 rdf:first sg:person.0673414055.78
146 rdf:rest N86d0e66c58c74e98a43d265b99f33d20
147 Nda182900c9d64314a5d476b3687d75be rdf:first sg:person.0734140604.44
148 rdf:rest Ned0b0603850f476b9b42083e49863f70
149 Ne077ba3f661749539434e0682f8479d0 rdf:first sg:person.01010560470.38
150 rdf:rest N94b92cf000d4416f91c5b5eead795214
151 Ne09f036a32a54fb9a929bbabb68d566b rdf:first Nb500dbd1fe3e4f67be62f29d242bfd0a
152 rdf:rest N2406c92bc3a5431aa4d9f67514c136ba
153 Ne8df5639aecd4066b48261931ef46887 schema:name Springer Nature
154 rdf:type schema:Organisation
155 Ned0b0603850f476b9b42083e49863f70 rdf:first sg:person.01066111014.77
156 rdf:rest rdf:nil
157 Neeccf7bfc1574bd7bb158ead86bd7232 schema:name Springer Nature - SN SciGraph project
158 rdf:type schema:Organization
159 Nf5c47a2a59b1475fb44a6bbdf83758e4 rdf:first sg:person.0645046407.44
160 rdf:rest Nda182900c9d64314a5d476b3687d75be
161 Nfa52852a2f274b0dae04c7de63c6bd1c schema:familyName Erdt
162 schema:givenName Marius
163 rdf:type schema:Person
164 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
165 schema:name Medical and Health Sciences
166 rdf:type schema:DefinedTerm
167 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
168 schema:name Cardiorespiratory Medicine and Haematology
169 rdf:type schema:DefinedTerm
170 sg:person.01010560470.38 schema:affiliation grid-institutes:grid.419233.e
171 schema:familyName Ionasec
172 schema:givenName Razvan
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010560470.38
174 rdf:type schema:Person
175 sg:person.01066111014.77 schema:affiliation grid-institutes:grid.419233.e
176 schema:familyName Comaniciu
177 schema:givenName Dorin
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77
179 rdf:type schema:Person
180 sg:person.01242456111.33 schema:affiliation grid-institutes:grid.419233.e
181 schema:familyName Vitanovski
182 schema:givenName Dime
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242456111.33
184 rdf:type schema:Person
185 sg:person.01300352106.09 schema:affiliation grid-institutes:None
186 schema:familyName Gruner
187 schema:givenName Christiane
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300352106.09
189 rdf:type schema:Person
190 sg:person.01356704511.13 schema:affiliation grid-institutes:grid.419233.e
191 schema:familyName Wang
192 schema:givenName Yang
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356704511.13
194 rdf:type schema:Person
195 sg:person.0645046407.44 schema:affiliation grid-institutes:None
196 schema:familyName Biaggi
197 schema:givenName Patric
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645046407.44
199 rdf:type schema:Person
200 sg:person.0673414055.78 schema:affiliation grid-institutes:None
201 schema:familyName Datta
202 schema:givenName Saurabh
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673414055.78
204 rdf:type schema:Person
205 sg:person.0703547214.37 schema:affiliation grid-institutes:grid.419233.e
206 schema:familyName Georgescu
207 schema:givenName Bogdan
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37
209 rdf:type schema:Person
210 sg:person.0734140604.44 schema:affiliation grid-institutes:grid.419233.e
211 schema:familyName Funka-Lea
212 schema:givenName Gareth
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734140604.44
214 rdf:type schema:Person
215 sg:person.0736546761.91 schema:affiliation grid-institutes:None
216 schema:familyName Herzog
217 schema:givenName Bernhard
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736546761.91
219 rdf:type schema:Person
220 sg:person.0751662414.66 schema:affiliation grid-institutes:grid.419233.e
221 schema:familyName Voigt
222 schema:givenName Ingmar
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751662414.66
224 rdf:type schema:Person
225 grid-institutes:None schema:alternateName Cardiovascular Center, University Hospital, Zurich, Switzerland
226 Siemens Ultrasound, Mountain View, CA, USA
227 schema:name Cardiovascular Center, University Hospital, Zurich, Switzerland
228 Siemens Ultrasound, Mountain View, CA, USA
229 rdf:type schema:Organization
230 grid-institutes:grid.419233.e schema:alternateName Imaging and Computer Vision, Siemens Corporate Research, Princeton, NJ, USA
231 schema:name Imaging and Computer Vision, Siemens Corporate Research, Princeton, NJ, USA
232 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...