Automatic Detection and Quantification of Mitral Regurgitation on TTE with Application to Assist Mitral Clip Planning and Evaluation View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013

AUTHORS

Yang Wang , Dime Vitanovski , Bogdan Georgescu , Razvan Ionasec , Ingmar Voigt , Saurabh Datta , Christiane Gruner , Bernhard Herzog , Patric Biaggi , Gareth Funka-Lea , Dorin Comaniciu

ABSTRACT

Mitral regurgitation (MR), characterized by reverse blood flow during systole, is one of the most common valvular heart diseases. It typically requires treatment via surgical (mitral valve replacement or repair) or percutaneous approaches (e.g., MitraClip). To assist clinical diagnosis and assessment, we propose a learning-based framework to automatically detect and quantify mitral regurgitation from transthoracic echocardiography (TTE), which is usually the initial method to evaluate the cardiac and valve function. Our method leverages both anatomical (B-Mode) and hemodynamical (Color Doppler) information by extracting 3D features on multiple channels and selecting the most relevant ones by a boosting-based approach. Furthermore, the proposed framework provides an automatic modeling of mitral valve structures, such as the location of the regurgitant orifice, the mitral annulus, and the mitral valve closure line, which can be used to assist medical treatment or interventions. To demonstrate the performance of our method, we evaluate the system on a clinical dataset acquired from MR patients. Preliminary results agree well with clinical measurements in a quantitative manner. More... »

PAGES

33-41

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-38079-2_5

DOI

http://dx.doi.org/10.1007/978-3-642-38079-2_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009928573


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Research, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yang", 
        "id": "sg:person.01356704511.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356704511.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Research, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vitanovski", 
        "givenName": "Dime", 
        "id": "sg:person.01242456111.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242456111.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Research, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Georgescu", 
        "givenName": "Bogdan", 
        "id": "sg:person.0703547214.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Research, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ionasec", 
        "givenName": "Razvan", 
        "id": "sg:person.01010560470.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010560470.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Research, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Voigt", 
        "givenName": "Ingmar", 
        "id": "sg:person.0751662414.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751662414.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Ultrasound, Mountain View, CA, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Siemens Ultrasound, Mountain View, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Datta", 
        "givenName": "Saurabh", 
        "id": "sg:person.0673414055.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673414055.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cardiovascular Center, University Hospital, Zurich, Switzerland", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Cardiovascular Center, University Hospital, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gruner", 
        "givenName": "Christiane", 
        "id": "sg:person.01300352106.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300352106.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cardiovascular Center, University Hospital, Zurich, Switzerland", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Cardiovascular Center, University Hospital, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Herzog", 
        "givenName": "Bernhard", 
        "id": "sg:person.0736546761.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736546761.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cardiovascular Center, University Hospital, Zurich, Switzerland", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Cardiovascular Center, University Hospital, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Biaggi", 
        "givenName": "Patric", 
        "id": "sg:person.0645046407.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645046407.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Research, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Funka-Lea", 
        "givenName": "Gareth", 
        "id": "sg:person.0734140604.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734140604.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Research, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Research, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Comaniciu", 
        "givenName": "Dorin", 
        "id": "sg:person.01066111014.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "Mitral regurgitation (MR), characterized by reverse blood flow during systole, is one of the most common valvular heart diseases. It typically requires treatment via surgical (mitral valve replacement or repair) or percutaneous approaches (e.g., MitraClip). To assist clinical diagnosis and assessment, we propose a learning-based framework to automatically detect and quantify mitral regurgitation from transthoracic echocardiography (TTE), which is usually the initial method to evaluate the cardiac and valve function. Our method leverages both anatomical (B-Mode) and hemodynamical (Color Doppler) information by extracting 3D features on multiple channels and selecting the most relevant ones by a boosting-based approach. Furthermore, the proposed framework provides an automatic modeling of mitral valve structures, such as the location of the regurgitant orifice, the mitral annulus, and the mitral valve closure line, which can be used to assist medical treatment or interventions. To demonstrate the performance of our method, we evaluate the system on a clinical dataset acquired from MR patients. Preliminary results agree well with clinical measurements in a quantitative manner.", 
    "editor": [
      {
        "familyName": "Drechsler", 
        "givenName": "Klaus", 
        "type": "Person"
      }, 
      {
        "familyName": "Erdt", 
        "givenName": "Marius", 
        "type": "Person"
      }, 
      {
        "familyName": "Linguraru", 
        "givenName": "Marius George", 
        "type": "Person"
      }, 
      {
        "familyName": "Oyarzun Laura", 
        "givenName": "Cristina", 
        "type": "Person"
      }, 
      {
        "familyName": "Sharma", 
        "givenName": "Karun", 
        "type": "Person"
      }, 
      {
        "familyName": "Shekhar", 
        "givenName": "Raj", 
        "type": "Person"
      }, 
      {
        "familyName": "Wesarg", 
        "givenName": "Stefan", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-38079-2_5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-38078-5", 
        "978-3-642-38079-2"
      ], 
      "name": "Clinical Image-Based Procedures. From Planning to Intervention", 
      "type": "Book"
    }, 
    "keywords": [
      "mitral regurgitation", 
      "transthoracic echocardiography", 
      "common valvular heart disease", 
      "valvular heart disease", 
      "reverse blood flow", 
      "mitral valve structure", 
      "percutaneous approach", 
      "heart disease", 
      "mitral annulus", 
      "blood flow", 
      "MR patients", 
      "medical treatment", 
      "clinical diagnosis", 
      "regurgitation", 
      "clinical measurements", 
      "regurgitant orifice", 
      "closure line", 
      "treatment", 
      "clinical datasets", 
      "initial method", 
      "echocardiography", 
      "patients", 
      "disease", 
      "diagnosis", 
      "systole", 
      "intervention", 
      "preliminary results", 
      "valve structure", 
      "assessment", 
      "orifice", 
      "evaluation", 
      "annulus", 
      "manner", 
      "function", 
      "method", 
      "lines", 
      "detection", 
      "quantification", 
      "features", 
      "quantitative manner", 
      "results", 
      "approach", 
      "information", 
      "location", 
      "planning", 
      "learning-based framework", 
      "boosting-based approach", 
      "measurements", 
      "channels", 
      "automatic modeling", 
      "flow", 
      "automatic detection", 
      "system", 
      "relevant ones", 
      "multiple channels", 
      "one", 
      "framework", 
      "dataset", 
      "applications", 
      "performance", 
      "structure", 
      "modeling"
    ], 
    "name": "Automatic Detection and Quantification of Mitral Regurgitation on TTE with Application to Assist Mitral Clip Planning and Evaluation", 
    "pagination": "33-41", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009928573"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-38079-2_5"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-38079-2_5", 
      "https://app.dimensions.ai/details/publication/pub.1009928573"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_296.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-38079-2_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-38079-2_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-38079-2_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-38079-2_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-38079-2_5'


 

This table displays all metadata directly associated to this object as RDF triples.

227 TRIPLES      23 PREDICATES      88 URIs      81 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-38079-2_5 schema:about anzsrc-for:11
2 anzsrc-for:1102
3 schema:author N5805c9fca0ba48cfac2d391a3a412fc2
4 schema:datePublished 2013
5 schema:datePublishedReg 2013-01-01
6 schema:description Mitral regurgitation (MR), characterized by reverse blood flow during systole, is one of the most common valvular heart diseases. It typically requires treatment via surgical (mitral valve replacement or repair) or percutaneous approaches (e.g., MitraClip). To assist clinical diagnosis and assessment, we propose a learning-based framework to automatically detect and quantify mitral regurgitation from transthoracic echocardiography (TTE), which is usually the initial method to evaluate the cardiac and valve function. Our method leverages both anatomical (B-Mode) and hemodynamical (Color Doppler) information by extracting 3D features on multiple channels and selecting the most relevant ones by a boosting-based approach. Furthermore, the proposed framework provides an automatic modeling of mitral valve structures, such as the location of the regurgitant orifice, the mitral annulus, and the mitral valve closure line, which can be used to assist medical treatment or interventions. To demonstrate the performance of our method, we evaluate the system on a clinical dataset acquired from MR patients. Preliminary results agree well with clinical measurements in a quantitative manner.
7 schema:editor N0869f924df3c4b4f8e2e1bc7cafa161e
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Na83ac27202fb49679bd5e5baafd04ba0
12 schema:keywords MR patients
13 annulus
14 applications
15 approach
16 assessment
17 automatic detection
18 automatic modeling
19 blood flow
20 boosting-based approach
21 channels
22 clinical datasets
23 clinical diagnosis
24 clinical measurements
25 closure line
26 common valvular heart disease
27 dataset
28 detection
29 diagnosis
30 disease
31 echocardiography
32 evaluation
33 features
34 flow
35 framework
36 function
37 heart disease
38 information
39 initial method
40 intervention
41 learning-based framework
42 lines
43 location
44 manner
45 measurements
46 medical treatment
47 method
48 mitral annulus
49 mitral regurgitation
50 mitral valve structure
51 modeling
52 multiple channels
53 one
54 orifice
55 patients
56 percutaneous approach
57 performance
58 planning
59 preliminary results
60 quantification
61 quantitative manner
62 regurgitant orifice
63 regurgitation
64 relevant ones
65 results
66 reverse blood flow
67 structure
68 system
69 systole
70 transthoracic echocardiography
71 treatment
72 valve structure
73 valvular heart disease
74 schema:name Automatic Detection and Quantification of Mitral Regurgitation on TTE with Application to Assist Mitral Clip Planning and Evaluation
75 schema:pagination 33-41
76 schema:productId N7256f4fb4ba04a7c90908599d1d6dc9e
77 Ne7113ff60937420f9dd620b649147bc0
78 schema:publisher N367c7ae6dfda49a096900a5e662e42b6
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009928573
80 https://doi.org/10.1007/978-3-642-38079-2_5
81 schema:sdDatePublished 2022-05-20T07:45
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher N928a4a33df054533892895162c4ffe48
84 schema:url https://doi.org/10.1007/978-3-642-38079-2_5
85 sgo:license sg:explorer/license/
86 sgo:sdDataset chapters
87 rdf:type schema:Chapter
88 N06c56bccb87d4a98bbe40e0eee04363a rdf:first sg:person.01066111014.77
89 rdf:rest rdf:nil
90 N0869f924df3c4b4f8e2e1bc7cafa161e rdf:first Na71dbbd0ca474298ae171c1e8c8cb775
91 rdf:rest N0a81c81b509a4cf7a61d226a49636c9d
92 N0a81c81b509a4cf7a61d226a49636c9d rdf:first N7b1732e4faf8420f97305f6c0ab1c411
93 rdf:rest Ne7cf4e07fc3d485aacbe228e47c9f898
94 N1a272275dcf346b0a1898d05a3e202d1 schema:familyName Wesarg
95 schema:givenName Stefan
96 rdf:type schema:Person
97 N1e180665ba914954979cca638a65c525 rdf:first sg:person.0751662414.66
98 rdf:rest N30ef1ef23aa44213a2bd8e978bfa5f59
99 N30ef1ef23aa44213a2bd8e978bfa5f59 rdf:first sg:person.0673414055.78
100 rdf:rest Nfa68526391c04d34a4fe074d732c074e
101 N327ab0fbeb454fd48135a1d6607c6a94 schema:familyName Sharma
102 schema:givenName Karun
103 rdf:type schema:Person
104 N367c7ae6dfda49a096900a5e662e42b6 schema:name Springer Nature
105 rdf:type schema:Organisation
106 N47eff843e7704655813ed1ca5725e81a rdf:first sg:person.01010560470.38
107 rdf:rest N1e180665ba914954979cca638a65c525
108 N5805c9fca0ba48cfac2d391a3a412fc2 rdf:first sg:person.01356704511.13
109 rdf:rest N9effe1d2dcc44ff7949949be8614ee6d
110 N7256f4fb4ba04a7c90908599d1d6dc9e schema:name doi
111 schema:value 10.1007/978-3-642-38079-2_5
112 rdf:type schema:PropertyValue
113 N7b1732e4faf8420f97305f6c0ab1c411 schema:familyName Erdt
114 schema:givenName Marius
115 rdf:type schema:Person
116 N860417dde4084718b95317121cd2b6f2 rdf:first sg:person.0736546761.91
117 rdf:rest Nd9c03127a2c14c169a39d89b0cb1408f
118 N865f3fd7aa9940fc9beb00a1fe3ccd32 schema:familyName Linguraru
119 schema:givenName Marius George
120 rdf:type schema:Person
121 N8bb794e80cd34706a8b383576254eac2 rdf:first N327ab0fbeb454fd48135a1d6607c6a94
122 rdf:rest Nbc3bd24d51e9497f8b9cdf581f081902
123 N928a4a33df054533892895162c4ffe48 schema:name Springer Nature - SN SciGraph project
124 rdf:type schema:Organization
125 N9effe1d2dcc44ff7949949be8614ee6d rdf:first sg:person.01242456111.33
126 rdf:rest Nd9fefa44d48a48619bba2dbca080f2f0
127 Na1e05a657ed146549cc98836a24b2c60 schema:familyName Oyarzun Laura
128 schema:givenName Cristina
129 rdf:type schema:Person
130 Na71dbbd0ca474298ae171c1e8c8cb775 schema:familyName Drechsler
131 schema:givenName Klaus
132 rdf:type schema:Person
133 Na83ac27202fb49679bd5e5baafd04ba0 schema:isbn 978-3-642-38078-5
134 978-3-642-38079-2
135 schema:name Clinical Image-Based Procedures. From Planning to Intervention
136 rdf:type schema:Book
137 Nbc3bd24d51e9497f8b9cdf581f081902 rdf:first Nbce7a8ec6a5b4df684d05999d65b1c55
138 rdf:rest Nd77042b6ed3c4bbf9c5250346663a4f5
139 Nbce7a8ec6a5b4df684d05999d65b1c55 schema:familyName Shekhar
140 schema:givenName Raj
141 rdf:type schema:Person
142 Ncbf4828f7f81460daeebf07d5e92e9ef rdf:first sg:person.0734140604.44
143 rdf:rest N06c56bccb87d4a98bbe40e0eee04363a
144 Nd77042b6ed3c4bbf9c5250346663a4f5 rdf:first N1a272275dcf346b0a1898d05a3e202d1
145 rdf:rest rdf:nil
146 Nd9c03127a2c14c169a39d89b0cb1408f rdf:first sg:person.0645046407.44
147 rdf:rest Ncbf4828f7f81460daeebf07d5e92e9ef
148 Nd9fefa44d48a48619bba2dbca080f2f0 rdf:first sg:person.0703547214.37
149 rdf:rest N47eff843e7704655813ed1ca5725e81a
150 Ne7113ff60937420f9dd620b649147bc0 schema:name dimensions_id
151 schema:value pub.1009928573
152 rdf:type schema:PropertyValue
153 Ne7cf4e07fc3d485aacbe228e47c9f898 rdf:first N865f3fd7aa9940fc9beb00a1fe3ccd32
154 rdf:rest Nfdcbe3f8b3bf441f8f42a7aa32bd1286
155 Nfa68526391c04d34a4fe074d732c074e rdf:first sg:person.01300352106.09
156 rdf:rest N860417dde4084718b95317121cd2b6f2
157 Nfdcbe3f8b3bf441f8f42a7aa32bd1286 rdf:first Na1e05a657ed146549cc98836a24b2c60
158 rdf:rest N8bb794e80cd34706a8b383576254eac2
159 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
160 schema:name Medical and Health Sciences
161 rdf:type schema:DefinedTerm
162 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
163 schema:name Cardiorespiratory Medicine and Haematology
164 rdf:type schema:DefinedTerm
165 sg:person.01010560470.38 schema:affiliation grid-institutes:grid.419233.e
166 schema:familyName Ionasec
167 schema:givenName Razvan
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010560470.38
169 rdf:type schema:Person
170 sg:person.01066111014.77 schema:affiliation grid-institutes:grid.419233.e
171 schema:familyName Comaniciu
172 schema:givenName Dorin
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77
174 rdf:type schema:Person
175 sg:person.01242456111.33 schema:affiliation grid-institutes:grid.419233.e
176 schema:familyName Vitanovski
177 schema:givenName Dime
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242456111.33
179 rdf:type schema:Person
180 sg:person.01300352106.09 schema:affiliation grid-institutes:None
181 schema:familyName Gruner
182 schema:givenName Christiane
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300352106.09
184 rdf:type schema:Person
185 sg:person.01356704511.13 schema:affiliation grid-institutes:grid.419233.e
186 schema:familyName Wang
187 schema:givenName Yang
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356704511.13
189 rdf:type schema:Person
190 sg:person.0645046407.44 schema:affiliation grid-institutes:None
191 schema:familyName Biaggi
192 schema:givenName Patric
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645046407.44
194 rdf:type schema:Person
195 sg:person.0673414055.78 schema:affiliation grid-institutes:None
196 schema:familyName Datta
197 schema:givenName Saurabh
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673414055.78
199 rdf:type schema:Person
200 sg:person.0703547214.37 schema:affiliation grid-institutes:grid.419233.e
201 schema:familyName Georgescu
202 schema:givenName Bogdan
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37
204 rdf:type schema:Person
205 sg:person.0734140604.44 schema:affiliation grid-institutes:grid.419233.e
206 schema:familyName Funka-Lea
207 schema:givenName Gareth
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734140604.44
209 rdf:type schema:Person
210 sg:person.0736546761.91 schema:affiliation grid-institutes:None
211 schema:familyName Herzog
212 schema:givenName Bernhard
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736546761.91
214 rdf:type schema:Person
215 sg:person.0751662414.66 schema:affiliation grid-institutes:grid.419233.e
216 schema:familyName Voigt
217 schema:givenName Ingmar
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751662414.66
219 rdf:type schema:Person
220 grid-institutes:None schema:alternateName Cardiovascular Center, University Hospital, Zurich, Switzerland
221 Siemens Ultrasound, Mountain View, CA, USA
222 schema:name Cardiovascular Center, University Hospital, Zurich, Switzerland
223 Siemens Ultrasound, Mountain View, CA, USA
224 rdf:type schema:Organization
225 grid-institutes:grid.419233.e schema:alternateName Imaging and Computer Vision, Siemens Corporate Research, Princeton, NJ, USA
226 schema:name Imaging and Computer Vision, Siemens Corporate Research, Princeton, NJ, USA
227 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...