A Metaheuristic Approach to Two Dimensional Recursive Digital Filter Design View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013

AUTHORS

Abhronil Sengupta , Tathagata Chakraborti , Amit Konar

ABSTRACT

The two dimensional IIR digital filter design problem has received increased attention over the past few years. Recently, several metaheuristic algorithms have been employed in this domain and have produced promising results. Invasive Weed Optimization is one of the latest population-based metaheuristic algorithms that mimics the colonizing action of weeds. In this chapter, an improvement to the classical weed optimization algorithm has been proposed by introducing a constriction factor in the seed dispersal phase. Temporal Difference Q-Learning has been employed to adapt this parameter for different population members through the successive generations. Such hybridization falls under a special class of adaptive Memetic Algorithms. The proposed memetic realization, called Intelligent Invasive Weed Optimization (IIWO), has been applied to the two-dimensional recursive digital filter design problem and it has outperformed several competitive algorithms that have been applied in this research field in the past. More... »

PAGES

167-182

References to SciGraph publications

  • 1999. Two-Dimensional Linear Systems in ADVANCES IN CONTROL
  • Book

    TITLE

    Advances in Heuristic Signal Processing and Applications

    ISBN

    978-3-642-37879-9
    978-3-642-37880-5

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-642-37880-5_8

    DOI

    http://dx.doi.org/10.1007/978-3-642-37880-5_8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1025810361


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Jadavpur University", 
              "id": "https://www.grid.ac/institutes/grid.216499.1", 
              "name": [
                "Dept. of Electronics and Telecommunication Eng., Jadavpur University, Kolkata, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sengupta", 
            "givenName": "Abhronil", 
            "id": "sg:person.01121424636.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121424636.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Jadavpur University", 
              "id": "https://www.grid.ac/institutes/grid.216499.1", 
              "name": [
                "Dept. of Electronics and Telecommunication Eng., Jadavpur University, Kolkata, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chakraborti", 
            "givenName": "Tathagata", 
            "id": "sg:person.012164351607.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012164351607.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Jadavpur University", 
              "id": "https://www.grid.ac/institutes/grid.216499.1", 
              "name": [
                "Dept. of Electronics and Telecommunication Eng., Jadavpur University, Kolkata, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Konar", 
            "givenName": "Amit", 
            "id": "sg:person.01337053064.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337053064.29"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-1-4471-0853-5_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013697970", 
              "https://doi.org/10.1007/978-1-4471-0853-5_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.engappai.2007.02.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014871745"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ecoinf.2006.07.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023248227"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0045-7825(99)00389-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029969435"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/19.293466", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061102673"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/72.925560", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061219574"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/82.580839", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061238120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/82.598426", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061238145"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/82.644586", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061238210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tassp.1974.1162535", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061517968"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tcsi.2003.811019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061564903"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tcsii.2005.862040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061569251"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tevc.2011.2132725", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061605044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmcc.2005.860570", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061797873"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsp.2005.845469", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061799535"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2065678", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069728687"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2528/pierb12042711", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070907870"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cec.2012.6256574", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093579164"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cec.2012.6256573", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094337224"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013", 
        "datePublishedReg": "2013-01-01", 
        "description": "The two dimensional IIR digital filter design problem has received increased attention over the past few years. Recently, several metaheuristic algorithms have been employed in this domain and have produced promising results. Invasive Weed Optimization is one of the latest population-based metaheuristic algorithms that mimics the colonizing action of weeds. In this chapter, an improvement to the classical weed optimization algorithm has been proposed by introducing a constriction factor in the seed dispersal phase. Temporal Difference Q-Learning has been employed to adapt this parameter for different population members through the successive generations. Such hybridization falls under a special class of adaptive Memetic Algorithms. The proposed memetic realization, called Intelligent Invasive Weed Optimization (IIWO), has been applied to the two-dimensional recursive digital filter design problem and it has outperformed several competitive algorithms that have been applied in this research field in the past.", 
        "editor": [
          {
            "familyName": "Chatterjee", 
            "givenName": "Amitava", 
            "type": "Person"
          }, 
          {
            "familyName": "Nobahari", 
            "givenName": "Hadi", 
            "type": "Person"
          }, 
          {
            "familyName": "Siarry", 
            "givenName": "Patrick", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-642-37880-5_8", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-642-37879-9", 
            "978-3-642-37880-5"
          ], 
          "name": "Advances in Heuristic Signal Processing and Applications", 
          "type": "Book"
        }, 
        "name": "A Metaheuristic Approach to Two Dimensional Recursive Digital Filter Design", 
        "pagination": "167-182", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-642-37880-5_8"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "7af73e8ddb4abab527bb91cfe911d063c8bbc512681952fe082cfde5c48d1fac"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1025810361"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-642-37880-5_8", 
          "https://app.dimensions.ai/details/publication/pub.1025810361"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T17:13", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000259.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-642-37880-5_8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-37880-5_8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-37880-5_8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-37880-5_8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-37880-5_8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    147 TRIPLES      23 PREDICATES      46 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-642-37880-5_8 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N2eb235b7b763420591016e042558401e
    4 schema:citation sg:pub.10.1007/978-1-4471-0853-5_10
    5 https://doi.org/10.1016/j.ecoinf.2006.07.003
    6 https://doi.org/10.1016/j.engappai.2007.02.004
    7 https://doi.org/10.1016/s0045-7825(99)00389-8
    8 https://doi.org/10.1109/19.293466
    9 https://doi.org/10.1109/72.925560
    10 https://doi.org/10.1109/82.580839
    11 https://doi.org/10.1109/82.598426
    12 https://doi.org/10.1109/82.644586
    13 https://doi.org/10.1109/cec.2012.6256573
    14 https://doi.org/10.1109/cec.2012.6256574
    15 https://doi.org/10.1109/tassp.1974.1162535
    16 https://doi.org/10.1109/tcsi.2003.811019
    17 https://doi.org/10.1109/tcsii.2005.862040
    18 https://doi.org/10.1109/tevc.2011.2132725
    19 https://doi.org/10.1109/tsmcc.2005.860570
    20 https://doi.org/10.1109/tsp.2005.845469
    21 https://doi.org/10.2307/2065678
    22 https://doi.org/10.2528/pierb12042711
    23 schema:datePublished 2013
    24 schema:datePublishedReg 2013-01-01
    25 schema:description The two dimensional IIR digital filter design problem has received increased attention over the past few years. Recently, several metaheuristic algorithms have been employed in this domain and have produced promising results. Invasive Weed Optimization is one of the latest population-based metaheuristic algorithms that mimics the colonizing action of weeds. In this chapter, an improvement to the classical weed optimization algorithm has been proposed by introducing a constriction factor in the seed dispersal phase. Temporal Difference Q-Learning has been employed to adapt this parameter for different population members through the successive generations. Such hybridization falls under a special class of adaptive Memetic Algorithms. The proposed memetic realization, called Intelligent Invasive Weed Optimization (IIWO), has been applied to the two-dimensional recursive digital filter design problem and it has outperformed several competitive algorithms that have been applied in this research field in the past.
    26 schema:editor N1b3d9c6a9ed542a0b3859fe9ea966862
    27 schema:genre chapter
    28 schema:inLanguage en
    29 schema:isAccessibleForFree false
    30 schema:isPartOf N4b5aad0232a64637bc8e0a3650eb919f
    31 schema:name A Metaheuristic Approach to Two Dimensional Recursive Digital Filter Design
    32 schema:pagination 167-182
    33 schema:productId N2865361028d64c9ea4938bd29f2a081c
    34 N9cd256022460484c8f83004ccecb1e10
    35 Nc04cde4a38c7419ab162551819ca8173
    36 schema:publisher Ne8bc5f9acfb748d39f7df13d15df8392
    37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025810361
    38 https://doi.org/10.1007/978-3-642-37880-5_8
    39 schema:sdDatePublished 2019-04-15T17:13
    40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    41 schema:sdPublisher N21fd498ef92a41c498235503e4e258a9
    42 schema:url http://link.springer.com/10.1007/978-3-642-37880-5_8
    43 sgo:license sg:explorer/license/
    44 sgo:sdDataset chapters
    45 rdf:type schema:Chapter
    46 N035ec336ad194e4d879dd52db2d30645 schema:familyName Chatterjee
    47 schema:givenName Amitava
    48 rdf:type schema:Person
    49 N1b33d852bbca490fa0fae6bc289880c9 schema:familyName Siarry
    50 schema:givenName Patrick
    51 rdf:type schema:Person
    52 N1b3d9c6a9ed542a0b3859fe9ea966862 rdf:first N035ec336ad194e4d879dd52db2d30645
    53 rdf:rest N59a85c3c73c14e528c8b272d1084bc81
    54 N1b71413d35cc409c9823eb0cea916e93 rdf:first sg:person.01337053064.29
    55 rdf:rest rdf:nil
    56 N21fd498ef92a41c498235503e4e258a9 schema:name Springer Nature - SN SciGraph project
    57 rdf:type schema:Organization
    58 N2865361028d64c9ea4938bd29f2a081c schema:name dimensions_id
    59 schema:value pub.1025810361
    60 rdf:type schema:PropertyValue
    61 N2eb235b7b763420591016e042558401e rdf:first sg:person.01121424636.87
    62 rdf:rest N76d83324b95545f98919e42782ec9227
    63 N4b5aad0232a64637bc8e0a3650eb919f schema:isbn 978-3-642-37879-9
    64 978-3-642-37880-5
    65 schema:name Advances in Heuristic Signal Processing and Applications
    66 rdf:type schema:Book
    67 N59a85c3c73c14e528c8b272d1084bc81 rdf:first N6ffcc463105242998741c922ceee9a91
    68 rdf:rest N63d970ebc5964c19b5d526ca9f0f15f0
    69 N63d970ebc5964c19b5d526ca9f0f15f0 rdf:first N1b33d852bbca490fa0fae6bc289880c9
    70 rdf:rest rdf:nil
    71 N6ffcc463105242998741c922ceee9a91 schema:familyName Nobahari
    72 schema:givenName Hadi
    73 rdf:type schema:Person
    74 N76d83324b95545f98919e42782ec9227 rdf:first sg:person.012164351607.51
    75 rdf:rest N1b71413d35cc409c9823eb0cea916e93
    76 N9cd256022460484c8f83004ccecb1e10 schema:name doi
    77 schema:value 10.1007/978-3-642-37880-5_8
    78 rdf:type schema:PropertyValue
    79 Nc04cde4a38c7419ab162551819ca8173 schema:name readcube_id
    80 schema:value 7af73e8ddb4abab527bb91cfe911d063c8bbc512681952fe082cfde5c48d1fac
    81 rdf:type schema:PropertyValue
    82 Ne8bc5f9acfb748d39f7df13d15df8392 schema:location Berlin, Heidelberg
    83 schema:name Springer Berlin Heidelberg
    84 rdf:type schema:Organisation
    85 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    86 schema:name Information and Computing Sciences
    87 rdf:type schema:DefinedTerm
    88 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    89 schema:name Artificial Intelligence and Image Processing
    90 rdf:type schema:DefinedTerm
    91 sg:person.01121424636.87 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
    92 schema:familyName Sengupta
    93 schema:givenName Abhronil
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121424636.87
    95 rdf:type schema:Person
    96 sg:person.012164351607.51 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
    97 schema:familyName Chakraborti
    98 schema:givenName Tathagata
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012164351607.51
    100 rdf:type schema:Person
    101 sg:person.01337053064.29 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
    102 schema:familyName Konar
    103 schema:givenName Amit
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337053064.29
    105 rdf:type schema:Person
    106 sg:pub.10.1007/978-1-4471-0853-5_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013697970
    107 https://doi.org/10.1007/978-1-4471-0853-5_10
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1016/j.ecoinf.2006.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023248227
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1016/j.engappai.2007.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014871745
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1016/s0045-7825(99)00389-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029969435
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1109/19.293466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061102673
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1109/72.925560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061219574
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1109/82.580839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061238120
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1109/82.598426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061238145
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1109/82.644586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061238210
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1109/cec.2012.6256573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094337224
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1109/cec.2012.6256574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093579164
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1109/tassp.1974.1162535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061517968
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1109/tcsi.2003.811019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061564903
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1109/tcsii.2005.862040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061569251
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1109/tevc.2011.2132725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061605044
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1109/tsmcc.2005.860570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061797873
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1109/tsp.2005.845469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061799535
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.2307/2065678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069728687
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.2528/pierb12042711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070907870
    144 rdf:type schema:CreativeWork
    145 https://www.grid.ac/institutes/grid.216499.1 schema:alternateName Jadavpur University
    146 schema:name Dept. of Electronics and Telecommunication Eng., Jadavpur University, Kolkata, India
    147 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...