Norms as Objectives: Revisiting Compliance Management in Multi-agent Systems View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013

AUTHORS

Aditya Ghose , Tony Bastin Roy Savarimuthu

ABSTRACT

This paper explores a hitherto largely ignored dimension to norms in multi-agent systems: the normative role played by optimization objectives. We introduce the notion of optimization norms which constrain agent behaviour in a manner that is significantly distinct from norms in the traditional sense. We argue that optimization norms underpin most other norms, and offer a richer representation of these. We outline a methodology for identifying the optimization norms that underpin other norms. We then define a notion of compliance for optimization norms, as well as a notion of consistency and inconsistency resolution. We offer an algebraic formalization of valued optimization norms which allows us to explicitly reason about degrees of compliance and graded sanctions. We then outline an approach to decomposing and distributing sanctions amongst multiple agents in settings where there is joint responsibility. More... »

PAGES

105-122

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-37756-3_7

DOI

http://dx.doi.org/10.1007/978-3-642-37756-3_7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031538213


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Decision Systems Laboratory, School of Computer Science and Software Engineering, University of Wollongong, 2522, NSW, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1007.6", 
          "name": [
            "Decision Systems Laboratory, School of Computer Science and Software Engineering, University of Wollongong, 2522, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ghose", 
        "givenName": "Aditya", 
        "id": "sg:person.015573517335.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015573517335.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dept. of Information Science, University of Otago, New Zealand", 
          "id": "http://www.grid.ac/institutes/grid.29980.3a", 
          "name": [
            "Dept. of Information Science, University of Otago, New Zealand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Savarimuthu", 
        "givenName": "Tony Bastin Roy", 
        "id": "sg:person.015235017775.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015235017775.64"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "This paper explores a hitherto largely ignored dimension to norms in multi-agent systems: the normative role played by optimization objectives. We introduce the notion of optimization norms which constrain agent behaviour in a manner that is significantly distinct from norms in the traditional sense. We argue that optimization norms underpin most other norms, and offer a richer representation of these. We outline a methodology for identifying the optimization norms that underpin other norms. We then define a notion of compliance for optimization norms, as well as a notion of consistency and inconsistency resolution. We offer an algebraic formalization of valued optimization norms which allows us to explicitly reason about degrees of compliance and graded sanctions. We then outline an approach to decomposing and distributing sanctions amongst multiple agents in settings where there is joint responsibility.", 
    "editor": [
      {
        "familyName": "Aldewereld", 
        "givenName": "Huib", 
        "type": "Person"
      }, 
      {
        "familyName": "Sichman", 
        "givenName": "Jaime Sim\u00e3o", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-37756-3_7", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-37755-6", 
        "978-3-642-37756-3"
      ], 
      "name": "Coordination, Organizations, Institutions, and Norms in Agent Systems VIII", 
      "type": "Book"
    }, 
    "keywords": [
      "multi-agent systems", 
      "notion of compliance", 
      "agent behavior", 
      "notion of consistency", 
      "rich representation", 
      "inconsistency resolution", 
      "compliance management", 
      "multiple agents", 
      "algebraic formalization", 
      "optimization objective", 
      "formalization", 
      "system", 
      "representation", 
      "notion", 
      "degree of compliance", 
      "methodology", 
      "traditional sense", 
      "objective", 
      "consistency", 
      "management", 
      "manner", 
      "compliance", 
      "sense", 
      "dimensions", 
      "norms", 
      "resolution", 
      "joint responsibility", 
      "setting", 
      "agents", 
      "behavior", 
      "responsibility", 
      "degree", 
      "role", 
      "hitherto", 
      "approach", 
      "sanctions", 
      "normative role", 
      "paper"
    ], 
    "name": "Norms as Objectives: Revisiting Compliance Management in Multi-agent Systems", 
    "pagination": "105-122", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031538213"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-37756-3_7"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-37756-3_7", 
      "https://app.dimensions.ai/details/publication/pub.1031538213"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_354.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-37756-3_7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-37756-3_7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-37756-3_7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-37756-3_7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-37756-3_7'


 

This table displays all metadata directly associated to this object as RDF triples.

112 TRIPLES      22 PREDICATES      63 URIs      56 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-37756-3_7 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N37bb79fca21543e1a552495c8c42f0d1
4 schema:datePublished 2013
5 schema:datePublishedReg 2013-01-01
6 schema:description This paper explores a hitherto largely ignored dimension to norms in multi-agent systems: the normative role played by optimization objectives. We introduce the notion of optimization norms which constrain agent behaviour in a manner that is significantly distinct from norms in the traditional sense. We argue that optimization norms underpin most other norms, and offer a richer representation of these. We outline a methodology for identifying the optimization norms that underpin other norms. We then define a notion of compliance for optimization norms, as well as a notion of consistency and inconsistency resolution. We offer an algebraic formalization of valued optimization norms which allows us to explicitly reason about degrees of compliance and graded sanctions. We then outline an approach to decomposing and distributing sanctions amongst multiple agents in settings where there is joint responsibility.
7 schema:editor N2e6ad857d9fc4b31b598d3dba25f3732
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N7cdbb9fdd2014c7fb11849204e24594e
11 schema:keywords agent behavior
12 agents
13 algebraic formalization
14 approach
15 behavior
16 compliance
17 compliance management
18 consistency
19 degree
20 degree of compliance
21 dimensions
22 formalization
23 hitherto
24 inconsistency resolution
25 joint responsibility
26 management
27 manner
28 methodology
29 multi-agent systems
30 multiple agents
31 normative role
32 norms
33 notion
34 notion of compliance
35 notion of consistency
36 objective
37 optimization objective
38 paper
39 representation
40 resolution
41 responsibility
42 rich representation
43 role
44 sanctions
45 sense
46 setting
47 system
48 traditional sense
49 schema:name Norms as Objectives: Revisiting Compliance Management in Multi-agent Systems
50 schema:pagination 105-122
51 schema:productId N0003c2429f15434f9183de5e27db0721
52 Nc38dae09f6514dc4a79522c2aa05ed14
53 schema:publisher Na6ba34b8bb524b268c4518069bb0503d
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031538213
55 https://doi.org/10.1007/978-3-642-37756-3_7
56 schema:sdDatePublished 2022-12-01T06:52
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher Nc2ae04846f7f435c89f7175dc8e3153d
59 schema:url https://doi.org/10.1007/978-3-642-37756-3_7
60 sgo:license sg:explorer/license/
61 sgo:sdDataset chapters
62 rdf:type schema:Chapter
63 N0003c2429f15434f9183de5e27db0721 schema:name doi
64 schema:value 10.1007/978-3-642-37756-3_7
65 rdf:type schema:PropertyValue
66 N1018e5dfed4b4d97a26f675fbb4258fb rdf:first Nb85c45c83a8c42c69bf6f2f32c2fe4a2
67 rdf:rest rdf:nil
68 N1394e0a1270347c78d3c9083284b81db schema:familyName Aldewereld
69 schema:givenName Huib
70 rdf:type schema:Person
71 N2e6ad857d9fc4b31b598d3dba25f3732 rdf:first N1394e0a1270347c78d3c9083284b81db
72 rdf:rest N1018e5dfed4b4d97a26f675fbb4258fb
73 N37bb79fca21543e1a552495c8c42f0d1 rdf:first sg:person.015573517335.70
74 rdf:rest N95e0ea8474ac4760b468e1cfcc1c28f8
75 N7cdbb9fdd2014c7fb11849204e24594e schema:isbn 978-3-642-37755-6
76 978-3-642-37756-3
77 schema:name Coordination, Organizations, Institutions, and Norms in Agent Systems VIII
78 rdf:type schema:Book
79 N95e0ea8474ac4760b468e1cfcc1c28f8 rdf:first sg:person.015235017775.64
80 rdf:rest rdf:nil
81 Na6ba34b8bb524b268c4518069bb0503d schema:name Springer Nature
82 rdf:type schema:Organisation
83 Nb85c45c83a8c42c69bf6f2f32c2fe4a2 schema:familyName Sichman
84 schema:givenName Jaime Simão
85 rdf:type schema:Person
86 Nc2ae04846f7f435c89f7175dc8e3153d schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 Nc38dae09f6514dc4a79522c2aa05ed14 schema:name dimensions_id
89 schema:value pub.1031538213
90 rdf:type schema:PropertyValue
91 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
92 schema:name Mathematical Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
95 schema:name Numerical and Computational Mathematics
96 rdf:type schema:DefinedTerm
97 sg:person.015235017775.64 schema:affiliation grid-institutes:grid.29980.3a
98 schema:familyName Savarimuthu
99 schema:givenName Tony Bastin Roy
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015235017775.64
101 rdf:type schema:Person
102 sg:person.015573517335.70 schema:affiliation grid-institutes:grid.1007.6
103 schema:familyName Ghose
104 schema:givenName Aditya
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015573517335.70
106 rdf:type schema:Person
107 grid-institutes:grid.1007.6 schema:alternateName Decision Systems Laboratory, School of Computer Science and Software Engineering, University of Wollongong, 2522, NSW, Australia
108 schema:name Decision Systems Laboratory, School of Computer Science and Software Engineering, University of Wollongong, 2522, NSW, Australia
109 rdf:type schema:Organization
110 grid-institutes:grid.29980.3a schema:alternateName Dept. of Information Science, University of Otago, New Zealand
111 schema:name Dept. of Information Science, University of Otago, New Zealand
112 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...