An Approach to Identifying False Traces in Process Event Logs View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013

AUTHORS

Hedong Yang , Lijie Wen , Jianmin Wang

ABSTRACT

By means of deriving knowledge from event logs, the application of process mining algorithms can provide valuable insight into the actual execution of business processes and help identify opportunities for their improvement. The event logs may be collected by people manually or generated by a variety of software applications, including business process management systems. However logging may not always be done in a reliable manner, resulting in events being missed or interchanged. Consequently, the results of the application of process mining algorithms to such “polluted” logs may not be so reliable and it would be preferable if false traces, i.e. polluted traces which are not possibly valid as regards the process model to be discovered, could be identified first and removed before such algorithms are applied. In this paper an approach is proposed that assists with identifying false traces in event logs as well as the cause of their pollution. The approach is empirically validated. More... »

PAGES

533-545

Book

TITLE

Advances in Knowledge Discovery and Data Mining

ISBN

978-3-642-37455-5
978-3-642-37456-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-37456-2_45

DOI

http://dx.doi.org/10.1007/978-3-642-37456-2_45

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013253540


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, 100084, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Hedong", 
        "id": "sg:person.014342721753.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014342721753.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, 100084, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wen", 
        "givenName": "Lijie", 
        "id": "sg:person.013640554311.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013640554311.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, 100084, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jianmin", 
        "id": "sg:person.012303351315.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012303351315.43"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "By means of deriving knowledge from event logs, the application of process mining algorithms can provide valuable insight into the actual execution of business processes and help identify opportunities for their improvement. The event logs may be collected by people manually or generated by a variety of software applications, including business process management systems. However logging may not always be done in a reliable manner, resulting in events being missed or interchanged. Consequently, the results of the application of process mining algorithms to such \u201cpolluted\u201d logs may not be so reliable and it would be preferable if false traces, i.e. polluted traces which are not possibly valid as regards the process model to be discovered, could be identified first and removed before such algorithms are applied. In this paper an approach is proposed that assists with identifying false traces in event logs as well as the cause of their pollution. The approach is empirically validated.", 
    "editor": [
      {
        "familyName": "Pei", 
        "givenName": "Jian", 
        "type": "Person"
      }, 
      {
        "familyName": "Tseng", 
        "givenName": "Vincent S.", 
        "type": "Person"
      }, 
      {
        "familyName": "Cao", 
        "givenName": "Longbing", 
        "type": "Person"
      }, 
      {
        "familyName": "Motoda", 
        "givenName": "Hiroshi", 
        "type": "Person"
      }, 
      {
        "familyName": "Xu", 
        "givenName": "Guandong", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-37456-2_45", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-37455-5", 
        "978-3-642-37456-2"
      ], 
      "name": "Advances in Knowledge Discovery and Data Mining", 
      "type": "Book"
    }, 
    "keywords": [
      "process mining algorithms", 
      "event logs", 
      "false traces", 
      "mining algorithms", 
      "business process management systems", 
      "process event logs", 
      "process management system", 
      "software applications", 
      "business processes", 
      "such algorithms", 
      "actual execution", 
      "management system", 
      "process model", 
      "algorithm", 
      "reliable manner", 
      "log", 
      "applications", 
      "traces", 
      "execution", 
      "system", 
      "valuable insights", 
      "assists", 
      "knowledge", 
      "model", 
      "improvement", 
      "opportunities", 
      "process", 
      "variety", 
      "manner", 
      "means", 
      "people", 
      "results", 
      "insights", 
      "events", 
      "pollution", 
      "cause", 
      "approach", 
      "paper", 
      "polluted traces"
    ], 
    "name": "An Approach to Identifying False Traces in Process Event Logs", 
    "pagination": "533-545", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013253540"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-37456-2_45"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-37456-2_45", 
      "https://app.dimensions.ai/details/publication/pub.1013253540"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_431.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-37456-2_45"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-37456-2_45'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-37456-2_45'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-37456-2_45'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-37456-2_45'


 

This table displays all metadata directly associated to this object as RDF triples.

133 TRIPLES      23 PREDICATES      65 URIs      58 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-37456-2_45 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Nb577242ba0da49b1ad48d38103786140
4 schema:datePublished 2013
5 schema:datePublishedReg 2013-01-01
6 schema:description By means of deriving knowledge from event logs, the application of process mining algorithms can provide valuable insight into the actual execution of business processes and help identify opportunities for their improvement. The event logs may be collected by people manually or generated by a variety of software applications, including business process management systems. However logging may not always be done in a reliable manner, resulting in events being missed or interchanged. Consequently, the results of the application of process mining algorithms to such “polluted” logs may not be so reliable and it would be preferable if false traces, i.e. polluted traces which are not possibly valid as regards the process model to be discovered, could be identified first and removed before such algorithms are applied. In this paper an approach is proposed that assists with identifying false traces in event logs as well as the cause of their pollution. The approach is empirically validated.
7 schema:editor Nfdbd05e105fa443299d0e7b6620782fd
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N1a8a378e44f3467a945e8a0a04ff4fdb
12 schema:keywords actual execution
13 algorithm
14 applications
15 approach
16 assists
17 business process management systems
18 business processes
19 cause
20 event logs
21 events
22 execution
23 false traces
24 improvement
25 insights
26 knowledge
27 log
28 management system
29 manner
30 means
31 mining algorithms
32 model
33 opportunities
34 paper
35 people
36 polluted traces
37 pollution
38 process
39 process event logs
40 process management system
41 process mining algorithms
42 process model
43 reliable manner
44 results
45 software applications
46 such algorithms
47 system
48 traces
49 valuable insights
50 variety
51 schema:name An Approach to Identifying False Traces in Process Event Logs
52 schema:pagination 533-545
53 schema:productId N2e59fd8531b9439188ddcc94c8df9948
54 Nf8be4dfbc0694111847daa0818cb4f42
55 schema:publisher Na2eb269ebc514d49818dfd2f7e7984a7
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013253540
57 https://doi.org/10.1007/978-3-642-37456-2_45
58 schema:sdDatePublished 2022-01-01T19:25
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N03e129f7e00b4ae28d9ca021db9310e3
61 schema:url https://doi.org/10.1007/978-3-642-37456-2_45
62 sgo:license sg:explorer/license/
63 sgo:sdDataset chapters
64 rdf:type schema:Chapter
65 N037205fd19ff47c4bc98ac662637f1cb rdf:first sg:person.013640554311.55
66 rdf:rest N6346a66d69f041d2a7c7ee8f8d3d3c63
67 N03e129f7e00b4ae28d9ca021db9310e3 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N1a8a378e44f3467a945e8a0a04ff4fdb schema:isbn 978-3-642-37455-5
70 978-3-642-37456-2
71 schema:name Advances in Knowledge Discovery and Data Mining
72 rdf:type schema:Book
73 N2e59fd8531b9439188ddcc94c8df9948 schema:name dimensions_id
74 schema:value pub.1013253540
75 rdf:type schema:PropertyValue
76 N37278075ba854cba850acb5fe73ee729 rdf:first N86ac1c33e8724b2495236eabdc3b9719
77 rdf:rest N824394a63c954425be5b99d17ecd5f0f
78 N3ab53843508f46c8867376c6a52af38e schema:familyName Cao
79 schema:givenName Longbing
80 rdf:type schema:Person
81 N49fb29c715584abeb39b5f950b6da06f rdf:first N3ab53843508f46c8867376c6a52af38e
82 rdf:rest N37278075ba854cba850acb5fe73ee729
83 N6346a66d69f041d2a7c7ee8f8d3d3c63 rdf:first sg:person.012303351315.43
84 rdf:rest rdf:nil
85 N7ecab8c8f4d141dd94e0225290413120 schema:familyName Xu
86 schema:givenName Guandong
87 rdf:type schema:Person
88 N824394a63c954425be5b99d17ecd5f0f rdf:first N7ecab8c8f4d141dd94e0225290413120
89 rdf:rest rdf:nil
90 N86ac1c33e8724b2495236eabdc3b9719 schema:familyName Motoda
91 schema:givenName Hiroshi
92 rdf:type schema:Person
93 N9a067cbc760c4f9896c850efe3506306 schema:familyName Tseng
94 schema:givenName Vincent S.
95 rdf:type schema:Person
96 Na2eb269ebc514d49818dfd2f7e7984a7 schema:name Springer Nature
97 rdf:type schema:Organisation
98 Nb577242ba0da49b1ad48d38103786140 rdf:first sg:person.014342721753.90
99 rdf:rest N037205fd19ff47c4bc98ac662637f1cb
100 Nca5e1695225f4bd0a3c1aa3c45b0899f rdf:first N9a067cbc760c4f9896c850efe3506306
101 rdf:rest N49fb29c715584abeb39b5f950b6da06f
102 Nde448fc2c885477f90198a1df023c5f7 schema:familyName Pei
103 schema:givenName Jian
104 rdf:type schema:Person
105 Nf8be4dfbc0694111847daa0818cb4f42 schema:name doi
106 schema:value 10.1007/978-3-642-37456-2_45
107 rdf:type schema:PropertyValue
108 Nfdbd05e105fa443299d0e7b6620782fd rdf:first Nde448fc2c885477f90198a1df023c5f7
109 rdf:rest Nca5e1695225f4bd0a3c1aa3c45b0899f
110 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
111 schema:name Information and Computing Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
114 schema:name Information Systems
115 rdf:type schema:DefinedTerm
116 sg:person.012303351315.43 schema:affiliation grid-institutes:grid.12527.33
117 schema:familyName Wang
118 schema:givenName Jianmin
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012303351315.43
120 rdf:type schema:Person
121 sg:person.013640554311.55 schema:affiliation grid-institutes:grid.12527.33
122 schema:familyName Wen
123 schema:givenName Lijie
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013640554311.55
125 rdf:type schema:Person
126 sg:person.014342721753.90 schema:affiliation grid-institutes:grid.12527.33
127 schema:familyName Yang
128 schema:givenName Hedong
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014342721753.90
130 rdf:type schema:Person
131 grid-institutes:grid.12527.33 schema:alternateName School of Software, Tsinghua University, 100084, Beijing, China
132 schema:name School of Software, Tsinghua University, 100084, Beijing, China
133 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...