An Approach to Identifying False Traces in Process Event Logs View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013

AUTHORS

Hedong Yang , Lijie Wen , Jianmin Wang

ABSTRACT

By means of deriving knowledge from event logs, the application of process mining algorithms can provide valuable insight into the actual execution of business processes and help identify opportunities for their improvement. The event logs may be collected by people manually or generated by a variety of software applications, including business process management systems. However logging may not always be done in a reliable manner, resulting in events being missed or interchanged. Consequently, the results of the application of process mining algorithms to such “polluted” logs may not be so reliable and it would be preferable if false traces, i.e. polluted traces which are not possibly valid as regards the process model to be discovered, could be identified first and removed before such algorithms are applied. In this paper an approach is proposed that assists with identifying false traces in event logs as well as the cause of their pollution. The approach is empirically validated. More... »

PAGES

533-545

Book

TITLE

Advances in Knowledge Discovery and Data Mining

ISBN

978-3-642-37455-5
978-3-642-37456-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-37456-2_45

DOI

http://dx.doi.org/10.1007/978-3-642-37456-2_45

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013253540


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, 100084, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Hedong", 
        "id": "sg:person.014342721753.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014342721753.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, 100084, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wen", 
        "givenName": "Lijie", 
        "id": "sg:person.013640554311.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013640554311.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, 100084, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jianmin", 
        "id": "sg:person.012303351315.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012303351315.43"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "By means of deriving knowledge from event logs, the application of process mining algorithms can provide valuable insight into the actual execution of business processes and help identify opportunities for their improvement. The event logs may be collected by people manually or generated by a variety of software applications, including business process management systems. However logging may not always be done in a reliable manner, resulting in events being missed or interchanged. Consequently, the results of the application of process mining algorithms to such \u201cpolluted\u201d logs may not be so reliable and it would be preferable if false traces, i.e. polluted traces which are not possibly valid as regards the process model to be discovered, could be identified first and removed before such algorithms are applied. In this paper an approach is proposed that assists with identifying false traces in event logs as well as the cause of their pollution. The approach is empirically validated.", 
    "editor": [
      {
        "familyName": "Pei", 
        "givenName": "Jian", 
        "type": "Person"
      }, 
      {
        "familyName": "Tseng", 
        "givenName": "Vincent S.", 
        "type": "Person"
      }, 
      {
        "familyName": "Cao", 
        "givenName": "Longbing", 
        "type": "Person"
      }, 
      {
        "familyName": "Motoda", 
        "givenName": "Hiroshi", 
        "type": "Person"
      }, 
      {
        "familyName": "Xu", 
        "givenName": "Guandong", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-37456-2_45", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-37455-5", 
        "978-3-642-37456-2"
      ], 
      "name": "Advances in Knowledge Discovery and Data Mining", 
      "type": "Book"
    }, 
    "keywords": [
      "process mining algorithms", 
      "event logs", 
      "mining algorithms", 
      "business process management system", 
      "process event logs", 
      "process management system", 
      "software applications", 
      "business processes", 
      "such algorithms", 
      "actual execution", 
      "management system", 
      "process model", 
      "algorithm", 
      "reliable manner", 
      "logs", 
      "applications", 
      "traces", 
      "execution", 
      "valuable insights", 
      "system", 
      "assists", 
      "knowledge", 
      "model", 
      "opportunities", 
      "improvement", 
      "manner", 
      "process", 
      "variety", 
      "people", 
      "means", 
      "results", 
      "insights", 
      "events", 
      "pollution", 
      "cause", 
      "approach", 
      "paper"
    ], 
    "name": "An Approach to Identifying False Traces in Process Event Logs", 
    "pagination": "533-545", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013253540"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-37456-2_45"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-37456-2_45", 
      "https://app.dimensions.ai/details/publication/pub.1013253540"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_148.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-37456-2_45"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-37456-2_45'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-37456-2_45'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-37456-2_45'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-37456-2_45'


 

This table displays all metadata directly associated to this object as RDF triples.

131 TRIPLES      23 PREDICATES      63 URIs      56 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-37456-2_45 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N706d1567dc3a419f860c1b905ff3def1
4 schema:datePublished 2013
5 schema:datePublishedReg 2013-01-01
6 schema:description By means of deriving knowledge from event logs, the application of process mining algorithms can provide valuable insight into the actual execution of business processes and help identify opportunities for their improvement. The event logs may be collected by people manually or generated by a variety of software applications, including business process management systems. However logging may not always be done in a reliable manner, resulting in events being missed or interchanged. Consequently, the results of the application of process mining algorithms to such “polluted” logs may not be so reliable and it would be preferable if false traces, i.e. polluted traces which are not possibly valid as regards the process model to be discovered, could be identified first and removed before such algorithms are applied. In this paper an approach is proposed that assists with identifying false traces in event logs as well as the cause of their pollution. The approach is empirically validated.
7 schema:editor N326c5aea630c4668a6aedadd6429acc2
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N4752146addbe4198acfee74b244ef71b
12 schema:keywords actual execution
13 algorithm
14 applications
15 approach
16 assists
17 business process management system
18 business processes
19 cause
20 event logs
21 events
22 execution
23 improvement
24 insights
25 knowledge
26 logs
27 management system
28 manner
29 means
30 mining algorithms
31 model
32 opportunities
33 paper
34 people
35 pollution
36 process
37 process event logs
38 process management system
39 process mining algorithms
40 process model
41 reliable manner
42 results
43 software applications
44 such algorithms
45 system
46 traces
47 valuable insights
48 variety
49 schema:name An Approach to Identifying False Traces in Process Event Logs
50 schema:pagination 533-545
51 schema:productId Nee3055f885b540e6a633650d249dbaef
52 Nf8a62f72517441e5a00cc654a7fcb68a
53 schema:publisher N3bc0e4f1a116440bac825fbeb4660fc7
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013253540
55 https://doi.org/10.1007/978-3-642-37456-2_45
56 schema:sdDatePublished 2022-05-20T07:42
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N6be98861b73141698013cef73bbe9b21
59 schema:url https://doi.org/10.1007/978-3-642-37456-2_45
60 sgo:license sg:explorer/license/
61 sgo:sdDataset chapters
62 rdf:type schema:Chapter
63 N0087bc67ec1c447b8a367ed0f91f6ad4 schema:familyName Motoda
64 schema:givenName Hiroshi
65 rdf:type schema:Person
66 N05e453597b4746d6857d29f4c8f270b5 schema:familyName Cao
67 schema:givenName Longbing
68 rdf:type schema:Person
69 N23f25abecbd94adc891d941e35429e18 schema:familyName Xu
70 schema:givenName Guandong
71 rdf:type schema:Person
72 N326c5aea630c4668a6aedadd6429acc2 rdf:first N571cdb03198146c09b6bb6305cbc32dd
73 rdf:rest Nfe49343cb750494ab635c265b123f218
74 N3bc0e4f1a116440bac825fbeb4660fc7 schema:name Springer Nature
75 rdf:type schema:Organisation
76 N3d20a2ae04e24147850304a17fd61630 rdf:first N23f25abecbd94adc891d941e35429e18
77 rdf:rest rdf:nil
78 N4752146addbe4198acfee74b244ef71b schema:isbn 978-3-642-37455-5
79 978-3-642-37456-2
80 schema:name Advances in Knowledge Discovery and Data Mining
81 rdf:type schema:Book
82 N4dd0a839df6a4216a34958cb1c62a49c rdf:first sg:person.012303351315.43
83 rdf:rest rdf:nil
84 N5514152343094c958d076f833d9037f8 rdf:first N05e453597b4746d6857d29f4c8f270b5
85 rdf:rest Nbb6991aa50924843bee8e296cd4908f9
86 N571cdb03198146c09b6bb6305cbc32dd schema:familyName Pei
87 schema:givenName Jian
88 rdf:type schema:Person
89 N6af91db8eb38403c996602c7940d8f64 schema:familyName Tseng
90 schema:givenName Vincent S.
91 rdf:type schema:Person
92 N6be98861b73141698013cef73bbe9b21 schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N6ed11112d1164740bc1376e8e1e0ae3c rdf:first sg:person.013640554311.55
95 rdf:rest N4dd0a839df6a4216a34958cb1c62a49c
96 N706d1567dc3a419f860c1b905ff3def1 rdf:first sg:person.014342721753.90
97 rdf:rest N6ed11112d1164740bc1376e8e1e0ae3c
98 Nbb6991aa50924843bee8e296cd4908f9 rdf:first N0087bc67ec1c447b8a367ed0f91f6ad4
99 rdf:rest N3d20a2ae04e24147850304a17fd61630
100 Nee3055f885b540e6a633650d249dbaef schema:name dimensions_id
101 schema:value pub.1013253540
102 rdf:type schema:PropertyValue
103 Nf8a62f72517441e5a00cc654a7fcb68a schema:name doi
104 schema:value 10.1007/978-3-642-37456-2_45
105 rdf:type schema:PropertyValue
106 Nfe49343cb750494ab635c265b123f218 rdf:first N6af91db8eb38403c996602c7940d8f64
107 rdf:rest N5514152343094c958d076f833d9037f8
108 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
109 schema:name Information and Computing Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
112 schema:name Information Systems
113 rdf:type schema:DefinedTerm
114 sg:person.012303351315.43 schema:affiliation grid-institutes:grid.12527.33
115 schema:familyName Wang
116 schema:givenName Jianmin
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012303351315.43
118 rdf:type schema:Person
119 sg:person.013640554311.55 schema:affiliation grid-institutes:grid.12527.33
120 schema:familyName Wen
121 schema:givenName Lijie
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013640554311.55
123 rdf:type schema:Person
124 sg:person.014342721753.90 schema:affiliation grid-institutes:grid.12527.33
125 schema:familyName Yang
126 schema:givenName Hedong
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014342721753.90
128 rdf:type schema:Person
129 grid-institutes:grid.12527.33 schema:alternateName School of Software, Tsinghua University, 100084, Beijing, China
130 schema:name School of Software, Tsinghua University, 100084, Beijing, China
131 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...