Twin Bridge Transfer Learning for Sparse Collaborative Filtering View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013

AUTHORS

Jiangfeng Shi , Mingsheng Long , Qiang Liu , Guiguang Ding , Jianmin Wang

ABSTRACT

Collaborative filtering (CF) is widely applied in recommender systems. However, the sparsity issue is still a crucial bottleneck for most existing CF methods. Although target data are extremely sparse for a newly-built CF system, some dense auxiliary data may already exist in other matured related domains. In this paper, we propose a novel approach, Twin Bridge Transfer Learning (TBT), to address the sparse collaborative filtering problem. TBT reduces the sparsity in target data by transferring knowledge from dense auxiliary data through two paths: 1) the latent factors of users and items learned from two dense auxiliary domains, and 2) the similarity graphs of users and items constructed from the learned latent factors. These two paths act as a twin bridge to allow more knowledge transferred across domains to reduce the sparsity of target data. Experiments on two benchmark datasets demonstrate that our TBT approach significantly outperforms state-of-the-art CF methods. More... »

PAGES

496-507

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-37453-1_41

DOI

http://dx.doi.org/10.1007/978-3-642-37453-1_41

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046829987


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science & Technology, Tsinghua University, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "MOE Key Laboratory for Information System Security; TNLIST; School of Software, China", 
            "Department of Computer Science & Technology, Tsinghua University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Jiangfeng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science & Technology, Tsinghua University, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "MOE Key Laboratory for Information System Security; TNLIST; School of Software, China", 
            "Department of Computer Science & Technology, Tsinghua University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Long", 
        "givenName": "Mingsheng", 
        "id": "sg:person.013417115303.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013417115303.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MOE Key Laboratory for Information System Security; TNLIST; School of Software, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "MOE Key Laboratory for Information System Security; TNLIST; School of Software, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Qiang", 
        "id": "sg:person.012336175376.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012336175376.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MOE Key Laboratory for Information System Security; TNLIST; School of Software, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "MOE Key Laboratory for Information System Security; TNLIST; School of Software, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ding", 
        "givenName": "Guiguang", 
        "id": "sg:person.010516313067.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010516313067.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MOE Key Laboratory for Information System Security; TNLIST; School of Software, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "MOE Key Laboratory for Information System Security; TNLIST; School of Software, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jianmin", 
        "id": "sg:person.012303351315.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012303351315.43"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "Collaborative filtering (CF) is widely applied in recommender systems. However, the sparsity issue is still a crucial bottleneck for most existing CF methods. Although target data are extremely sparse for a newly-built CF system, some dense auxiliary data may already exist in other matured related domains. In this paper, we propose a novel approach, Twin Bridge Transfer Learning (TBT), to address the sparse collaborative filtering problem. TBT reduces the sparsity in target data by transferring knowledge from dense auxiliary data through two paths: 1) the latent factors of users and items learned from two dense auxiliary domains, and 2) the similarity graphs of users and items constructed from the learned latent factors. These two paths act as a twin bridge to allow more knowledge transferred across domains to reduce the sparsity of target data. Experiments on two benchmark datasets demonstrate that our TBT approach significantly outperforms state-of-the-art CF methods.", 
    "editor": [
      {
        "familyName": "Pei", 
        "givenName": "Jian", 
        "type": "Person"
      }, 
      {
        "familyName": "Tseng", 
        "givenName": "Vincent S.", 
        "type": "Person"
      }, 
      {
        "familyName": "Cao", 
        "givenName": "Longbing", 
        "type": "Person"
      }, 
      {
        "familyName": "Motoda", 
        "givenName": "Hiroshi", 
        "type": "Person"
      }, 
      {
        "familyName": "Xu", 
        "givenName": "Guandong", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-37453-1_41", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-37452-4", 
        "978-3-642-37453-1"
      ], 
      "name": "Advances in Knowledge Discovery and Data Mining", 
      "type": "Book"
    }, 
    "keywords": [
      "collaborative filtering", 
      "target data", 
      "CF method", 
      "art CF methods", 
      "collaborative filtering problem", 
      "auxiliary data", 
      "sparsity issue", 
      "recommender systems", 
      "transfer learning", 
      "similarity graph", 
      "benchmark datasets", 
      "auxiliary domain", 
      "related domains", 
      "CF system", 
      "latent factors", 
      "novel approach", 
      "crucial bottleneck", 
      "users", 
      "sparsity", 
      "filtering", 
      "filtering problem", 
      "datasets", 
      "domain", 
      "path", 
      "graph", 
      "bottleneck", 
      "system", 
      "learning", 
      "data", 
      "knowledge", 
      "method", 
      "items", 
      "more knowledge", 
      "issues", 
      "twin bridge", 
      "bridge transfer", 
      "experiments", 
      "state", 
      "bridge", 
      "transfer", 
      "factors", 
      "approach", 
      "paper", 
      "problem", 
      "dense auxiliary data", 
      "TBT", 
      "Bridge Transfer Learning", 
      "dense auxiliary domains", 
      "TBT approach", 
      "Twin Bridge Transfer", 
      "Sparse Collaborative Filtering"
    ], 
    "name": "Twin Bridge Transfer Learning for Sparse Collaborative Filtering", 
    "pagination": "496-507", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046829987"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-37453-1_41"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-37453-1_41", 
      "https://app.dimensions.ai/details/publication/pub.1046829987"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_445.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-37453-1_41"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-37453-1_41'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-37453-1_41'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-37453-1_41'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-37453-1_41'


 

This table displays all metadata directly associated to this object as RDF triples.

162 TRIPLES      23 PREDICATES      77 URIs      70 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-37453-1_41 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Nba4978cb332840dfaa212a8148b9964f
4 schema:datePublished 2013
5 schema:datePublishedReg 2013-01-01
6 schema:description Collaborative filtering (CF) is widely applied in recommender systems. However, the sparsity issue is still a crucial bottleneck for most existing CF methods. Although target data are extremely sparse for a newly-built CF system, some dense auxiliary data may already exist in other matured related domains. In this paper, we propose a novel approach, Twin Bridge Transfer Learning (TBT), to address the sparse collaborative filtering problem. TBT reduces the sparsity in target data by transferring knowledge from dense auxiliary data through two paths: 1) the latent factors of users and items learned from two dense auxiliary domains, and 2) the similarity graphs of users and items constructed from the learned latent factors. These two paths act as a twin bridge to allow more knowledge transferred across domains to reduce the sparsity of target data. Experiments on two benchmark datasets demonstrate that our TBT approach significantly outperforms state-of-the-art CF methods.
7 schema:editor Naad1b3f4fbbe414c9174e69255a5e4dc
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N1101e13a789f4730a08feae831328577
12 schema:keywords Bridge Transfer Learning
13 CF method
14 CF system
15 Sparse Collaborative Filtering
16 TBT
17 TBT approach
18 Twin Bridge Transfer
19 approach
20 art CF methods
21 auxiliary data
22 auxiliary domain
23 benchmark datasets
24 bottleneck
25 bridge
26 bridge transfer
27 collaborative filtering
28 collaborative filtering problem
29 crucial bottleneck
30 data
31 datasets
32 dense auxiliary data
33 dense auxiliary domains
34 domain
35 experiments
36 factors
37 filtering
38 filtering problem
39 graph
40 issues
41 items
42 knowledge
43 latent factors
44 learning
45 method
46 more knowledge
47 novel approach
48 paper
49 path
50 problem
51 recommender systems
52 related domains
53 similarity graph
54 sparsity
55 sparsity issue
56 state
57 system
58 target data
59 transfer
60 transfer learning
61 twin bridge
62 users
63 schema:name Twin Bridge Transfer Learning for Sparse Collaborative Filtering
64 schema:pagination 496-507
65 schema:productId N01275e0c40594de8b7fceb7b80d2e057
66 N25766b08647b47e4af434c6cfdcf59ba
67 schema:publisher Nbfeda283d2284db3b960e47f7654890a
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046829987
69 https://doi.org/10.1007/978-3-642-37453-1_41
70 schema:sdDatePublished 2022-01-01T19:25
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher Nd29c2a5d283141828b7c8c6f18fc7da2
73 schema:url https://doi.org/10.1007/978-3-642-37453-1_41
74 sgo:license sg:explorer/license/
75 sgo:sdDataset chapters
76 rdf:type schema:Chapter
77 N01275e0c40594de8b7fceb7b80d2e057 schema:name dimensions_id
78 schema:value pub.1046829987
79 rdf:type schema:PropertyValue
80 N1101e13a789f4730a08feae831328577 schema:isbn 978-3-642-37452-4
81 978-3-642-37453-1
82 schema:name Advances in Knowledge Discovery and Data Mining
83 rdf:type schema:Book
84 N25766b08647b47e4af434c6cfdcf59ba schema:name doi
85 schema:value 10.1007/978-3-642-37453-1_41
86 rdf:type schema:PropertyValue
87 N51c3c97f38984f3a80b54dadbcb82acd rdf:first sg:person.010516313067.55
88 rdf:rest Nf557a3107ec24d7991cf350b174df9ff
89 N5f98ba24dd9c40bca12b645cb8bc2eb3 schema:familyName Pei
90 schema:givenName Jian
91 rdf:type schema:Person
92 N694c99fbd47d4fc3b4b760e1f4df6560 rdf:first Ncc8f8e8f3df7476086c09be46232339d
93 rdf:rest N8632784a5cdf4fa29f77730cab31ebd2
94 N763db87bbab448d790b56f1dc26cedf6 rdf:first Nc3cf883af69847f19089dd6c3977d1fe
95 rdf:rest N694c99fbd47d4fc3b4b760e1f4df6560
96 N8632784a5cdf4fa29f77730cab31ebd2 rdf:first Ndaa10acf1c3a48c2a827662cfe44c26a
97 rdf:rest N9ed921a26b79403a8b02b7ed2e3da245
98 N9ed921a26b79403a8b02b7ed2e3da245 rdf:first Nb637d2a147a848b3b590c0e916329572
99 rdf:rest rdf:nil
100 Na3053504561f4dbca0d02b05eac04139 rdf:first sg:person.012336175376.49
101 rdf:rest N51c3c97f38984f3a80b54dadbcb82acd
102 Naad1b3f4fbbe414c9174e69255a5e4dc rdf:first N5f98ba24dd9c40bca12b645cb8bc2eb3
103 rdf:rest N763db87bbab448d790b56f1dc26cedf6
104 Nb637d2a147a848b3b590c0e916329572 schema:familyName Xu
105 schema:givenName Guandong
106 rdf:type schema:Person
107 Nba4978cb332840dfaa212a8148b9964f rdf:first Ndad2676d2e2e48808ccb534bda9d2830
108 rdf:rest Nc08d0b7b06884763bd2e34c47f24af5b
109 Nbfeda283d2284db3b960e47f7654890a schema:name Springer Nature
110 rdf:type schema:Organisation
111 Nc08d0b7b06884763bd2e34c47f24af5b rdf:first sg:person.013417115303.81
112 rdf:rest Na3053504561f4dbca0d02b05eac04139
113 Nc3cf883af69847f19089dd6c3977d1fe schema:familyName Tseng
114 schema:givenName Vincent S.
115 rdf:type schema:Person
116 Ncc8f8e8f3df7476086c09be46232339d schema:familyName Cao
117 schema:givenName Longbing
118 rdf:type schema:Person
119 Nd29c2a5d283141828b7c8c6f18fc7da2 schema:name Springer Nature - SN SciGraph project
120 rdf:type schema:Organization
121 Ndaa10acf1c3a48c2a827662cfe44c26a schema:familyName Motoda
122 schema:givenName Hiroshi
123 rdf:type schema:Person
124 Ndad2676d2e2e48808ccb534bda9d2830 schema:affiliation grid-institutes:grid.12527.33
125 schema:familyName Shi
126 schema:givenName Jiangfeng
127 rdf:type schema:Person
128 Nf557a3107ec24d7991cf350b174df9ff rdf:first sg:person.012303351315.43
129 rdf:rest rdf:nil
130 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
131 schema:name Information and Computing Sciences
132 rdf:type schema:DefinedTerm
133 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
134 schema:name Information Systems
135 rdf:type schema:DefinedTerm
136 sg:person.010516313067.55 schema:affiliation grid-institutes:None
137 schema:familyName Ding
138 schema:givenName Guiguang
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010516313067.55
140 rdf:type schema:Person
141 sg:person.012303351315.43 schema:affiliation grid-institutes:None
142 schema:familyName Wang
143 schema:givenName Jianmin
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012303351315.43
145 rdf:type schema:Person
146 sg:person.012336175376.49 schema:affiliation grid-institutes:None
147 schema:familyName Liu
148 schema:givenName Qiang
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012336175376.49
150 rdf:type schema:Person
151 sg:person.013417115303.81 schema:affiliation grid-institutes:grid.12527.33
152 schema:familyName Long
153 schema:givenName Mingsheng
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013417115303.81
155 rdf:type schema:Person
156 grid-institutes:None schema:alternateName MOE Key Laboratory for Information System Security; TNLIST; School of Software, China
157 schema:name MOE Key Laboratory for Information System Security; TNLIST; School of Software, China
158 rdf:type schema:Organization
159 grid-institutes:grid.12527.33 schema:alternateName Department of Computer Science & Technology, Tsinghua University, Beijing, China
160 schema:name Department of Computer Science & Technology, Tsinghua University, Beijing, China
161 MOE Key Laboratory for Information System Security; TNLIST; School of Software, China
162 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...