Selection Operators Based on Maximin Fitness Function for Multi-Objective Evolutionary Algorithms View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013

AUTHORS

Adriana Menchaca-Mendez , Carlos A. Coello Coello

ABSTRACT

We analyze here some properties of the maximin fitness function, which has been used by several researchers, as an alternative to Pareto optimality, for solving multi-objective optimization problems. As part of this analysis, we identify some disadvantages of the maximin fitness function and then propose mechanisms to overcome them. This leads to several selection operators for multi-objective evolutionary algorithms which are further analyzed. We incorporate them into an evolutionary algorithm, giving rise to the so-called Maximin-Clustering Multi-Objective Evolutionary Algorithm (MC-MOEA) approach. Our proposed approach is validated using standard test problems taken from the specialized literature, having from two to eight objectives. Our preliminary results indicate that our proposed approach is a good alternative to solve multi-objective optimization problems having both low dimensionality (two or three) and high dimensionality (more than three) in objective function space. More... »

PAGES

215-229

References to SciGraph publications

Book

TITLE

Evolutionary Multi-Criterion Optimization

ISBN

978-3-642-37139-4
978-3-642-37140-0

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-37140-0_19

DOI

http://dx.doi.org/10.1007/978-3-642-37140-0_19

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033980962


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Instituto Polit\u00e9cnico Nacional", 
          "id": "https://www.grid.ac/institutes/grid.418275.d", 
          "name": [
            "Departamento de Computaci\u00f3n, CINVESTAV-IPN (Evolutionary Computation Group), M\u00e9xico, D.F. 07300, M\u00e9xico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Menchaca-Mendez", 
        "givenName": "Adriana", 
        "id": "sg:person.015103606523.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015103606523.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto Polit\u00e9cnico Nacional", 
          "id": "https://www.grid.ac/institutes/grid.418275.d", 
          "name": [
            "Departamento de Computaci\u00f3n, CINVESTAV-IPN (Evolutionary Computation Group), M\u00e9xico, D.F. 07300, M\u00e9xico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coello", 
        "givenName": "Carlos A. Coello", 
        "id": "sg:person.012160505340.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012160505340.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4471-0675-3_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002069805", 
          "https://doi.org/10.1007/978-1-4471-0675-3_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4471-0675-3_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002069805", 
          "https://doi.org/10.1007/978-1-4471-0675-3_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-36970-8_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005849814", 
          "https://doi.org/10.1007/3-540-36970-8_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/evco_a_00009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007927159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0056872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008568979", 
          "https://doi.org/10.1007/bfb0056872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/106365600568202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014057085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2006.08.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014117674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/1-84628-137-7_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028475054", 
          "https://doi.org/10.1007/1-84628-137-7_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/4235.996017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061172126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2007.892759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061604790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cec.2012.6252953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094037314"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "We analyze here some properties of the maximin fitness function, which has been used by several researchers, as an alternative to Pareto optimality, for solving multi-objective optimization problems. As part of this analysis, we identify some disadvantages of the maximin fitness function and then propose mechanisms to overcome them. This leads to several selection operators for multi-objective evolutionary algorithms which are further analyzed. We incorporate them into an evolutionary algorithm, giving rise to the so-called Maximin-Clustering Multi-Objective Evolutionary Algorithm (MC-MOEA) approach. Our proposed approach is validated using standard test problems taken from the specialized literature, having from two to eight objectives. Our preliminary results indicate that our proposed approach is a good alternative to solve multi-objective optimization problems having both low dimensionality (two or three) and high dimensionality (more than three) in objective function space.", 
    "editor": [
      {
        "familyName": "Purshouse", 
        "givenName": "Robin C.", 
        "type": "Person"
      }, 
      {
        "familyName": "Fleming", 
        "givenName": "Peter J.", 
        "type": "Person"
      }, 
      {
        "familyName": "Fonseca", 
        "givenName": "Carlos M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Greco", 
        "givenName": "Salvatore", 
        "type": "Person"
      }, 
      {
        "familyName": "Shaw", 
        "givenName": "Jane", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-37140-0_19", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-37139-4", 
        "978-3-642-37140-0"
      ], 
      "name": "Evolutionary Multi-Criterion Optimization", 
      "type": "Book"
    }, 
    "name": "Selection Operators Based on Maximin Fitness Function for Multi-Objective Evolutionary Algorithms", 
    "pagination": "215-229", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-37140-0_19"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a1e08c019c858fe7a2dcc19df7587d9b84efde60443ebb9caf6986d556be0e20"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033980962"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-37140-0_19", 
      "https://app.dimensions.ai/details/publication/pub.1033980962"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T14:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000264.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-37140-0_19"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-37140-0_19'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-37140-0_19'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-37140-0_19'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-37140-0_19'


 

This table displays all metadata directly associated to this object as RDF triples.

126 TRIPLES      23 PREDICATES      37 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-37140-0_19 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Nb6feae02bdd047faa407eca24eabb55e
4 schema:citation sg:pub.10.1007/1-84628-137-7_6
5 sg:pub.10.1007/3-540-36970-8_1
6 sg:pub.10.1007/978-1-4471-0675-3_12
7 sg:pub.10.1007/bfb0056872
8 https://doi.org/10.1016/j.ejor.2006.08.008
9 https://doi.org/10.1109/4235.996017
10 https://doi.org/10.1109/cec.2012.6252953
11 https://doi.org/10.1109/tevc.2007.892759
12 https://doi.org/10.1162/106365600568202
13 https://doi.org/10.1162/evco_a_00009
14 schema:datePublished 2013
15 schema:datePublishedReg 2013-01-01
16 schema:description We analyze here some properties of the maximin fitness function, which has been used by several researchers, as an alternative to Pareto optimality, for solving multi-objective optimization problems. As part of this analysis, we identify some disadvantages of the maximin fitness function and then propose mechanisms to overcome them. This leads to several selection operators for multi-objective evolutionary algorithms which are further analyzed. We incorporate them into an evolutionary algorithm, giving rise to the so-called Maximin-Clustering Multi-Objective Evolutionary Algorithm (MC-MOEA) approach. Our proposed approach is validated using standard test problems taken from the specialized literature, having from two to eight objectives. Our preliminary results indicate that our proposed approach is a good alternative to solve multi-objective optimization problems having both low dimensionality (two or three) and high dimensionality (more than three) in objective function space.
17 schema:editor N2396d339a4c7427288a796a43e59b272
18 schema:genre chapter
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf Nf6783369dc45441dbe317c2bba93430c
22 schema:name Selection Operators Based on Maximin Fitness Function for Multi-Objective Evolutionary Algorithms
23 schema:pagination 215-229
24 schema:productId N4a98a6560b2548f1adcf56e8cc67075b
25 N5f14f6a56f4645a381eab3233081f861
26 N60248505f0f6438e8d21e621f86d54c2
27 schema:publisher N848ad865ecdd4178b2aeb39e71047930
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033980962
29 https://doi.org/10.1007/978-3-642-37140-0_19
30 schema:sdDatePublished 2019-04-15T14:26
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N339698b904494d4fab3bf1a6a64f6f40
33 schema:url http://link.springer.com/10.1007/978-3-642-37140-0_19
34 sgo:license sg:explorer/license/
35 sgo:sdDataset chapters
36 rdf:type schema:Chapter
37 N2396d339a4c7427288a796a43e59b272 rdf:first N68c6f931f19946f1a5fcf869ca5a0f76
38 rdf:rest N251becc7a22749308b8c9f0d1f3a564d
39 N251becc7a22749308b8c9f0d1f3a564d rdf:first Ncc9d7bf448c84b71af6a61192fdaa00b
40 rdf:rest Ne5f9bdef51e64e7088246bc52e9e2997
41 N339698b904494d4fab3bf1a6a64f6f40 schema:name Springer Nature - SN SciGraph project
42 rdf:type schema:Organization
43 N356154d570ec4572b69ec6e45cb66fce schema:familyName Shaw
44 schema:givenName Jane
45 rdf:type schema:Person
46 N4a98a6560b2548f1adcf56e8cc67075b schema:name dimensions_id
47 schema:value pub.1033980962
48 rdf:type schema:PropertyValue
49 N5f14f6a56f4645a381eab3233081f861 schema:name readcube_id
50 schema:value a1e08c019c858fe7a2dcc19df7587d9b84efde60443ebb9caf6986d556be0e20
51 rdf:type schema:PropertyValue
52 N60248505f0f6438e8d21e621f86d54c2 schema:name doi
53 schema:value 10.1007/978-3-642-37140-0_19
54 rdf:type schema:PropertyValue
55 N68c6f931f19946f1a5fcf869ca5a0f76 schema:familyName Purshouse
56 schema:givenName Robin C.
57 rdf:type schema:Person
58 N6bd8a9f90c3a4406a02ffb102f4a9f23 rdf:first N356154d570ec4572b69ec6e45cb66fce
59 rdf:rest rdf:nil
60 N848ad865ecdd4178b2aeb39e71047930 schema:location Berlin, Heidelberg
61 schema:name Springer Berlin Heidelberg
62 rdf:type schema:Organisation
63 N8d98ecef60f2402092ba49362513f1a1 schema:familyName Greco
64 schema:givenName Salvatore
65 rdf:type schema:Person
66 N9eafa1f55c0e4979a75d3f9222109acb rdf:first N8d98ecef60f2402092ba49362513f1a1
67 rdf:rest N6bd8a9f90c3a4406a02ffb102f4a9f23
68 Nb6feae02bdd047faa407eca24eabb55e rdf:first sg:person.015103606523.42
69 rdf:rest Nec941534df884167a22096e8819bd189
70 Ncc9d7bf448c84b71af6a61192fdaa00b schema:familyName Fleming
71 schema:givenName Peter J.
72 rdf:type schema:Person
73 Ndf2f1ead10ce41de96579371d599ac48 schema:familyName Fonseca
74 schema:givenName Carlos M.
75 rdf:type schema:Person
76 Ne5f9bdef51e64e7088246bc52e9e2997 rdf:first Ndf2f1ead10ce41de96579371d599ac48
77 rdf:rest N9eafa1f55c0e4979a75d3f9222109acb
78 Nec941534df884167a22096e8819bd189 rdf:first sg:person.012160505340.13
79 rdf:rest rdf:nil
80 Nf6783369dc45441dbe317c2bba93430c schema:isbn 978-3-642-37139-4
81 978-3-642-37140-0
82 schema:name Evolutionary Multi-Criterion Optimization
83 rdf:type schema:Book
84 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
85 schema:name Mathematical Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
88 schema:name Numerical and Computational Mathematics
89 rdf:type schema:DefinedTerm
90 sg:person.012160505340.13 schema:affiliation https://www.grid.ac/institutes/grid.418275.d
91 schema:familyName Coello
92 schema:givenName Carlos A. Coello
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012160505340.13
94 rdf:type schema:Person
95 sg:person.015103606523.42 schema:affiliation https://www.grid.ac/institutes/grid.418275.d
96 schema:familyName Menchaca-Mendez
97 schema:givenName Adriana
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015103606523.42
99 rdf:type schema:Person
100 sg:pub.10.1007/1-84628-137-7_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028475054
101 https://doi.org/10.1007/1-84628-137-7_6
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/3-540-36970-8_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005849814
104 https://doi.org/10.1007/3-540-36970-8_1
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/978-1-4471-0675-3_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002069805
107 https://doi.org/10.1007/978-1-4471-0675-3_12
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/bfb0056872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008568979
110 https://doi.org/10.1007/bfb0056872
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.ejor.2006.08.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014117674
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1109/4235.996017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061172126
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1109/cec.2012.6252953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094037314
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1109/tevc.2007.892759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604790
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1162/106365600568202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014057085
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1162/evco_a_00009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007927159
123 rdf:type schema:CreativeWork
124 https://www.grid.ac/institutes/grid.418275.d schema:alternateName Instituto Politécnico Nacional
125 schema:name Departamento de Computación, CINVESTAV-IPN (Evolutionary Computation Group), México, D.F. 07300, México
126 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...