Ontology type: schema:Chapter Open Access: True
2013
AUTHORSAlok Tongaonkar , Shuaifu Dai , Antonio Nucci , Dawn Song
ABSTRACTRecent years have seen an explosive growth in the number of mobile devices such as smart phones and tablets. This has resulted in a growing need of the operators to understand the usage patterns of the mobile apps used on these devices. Previous studies in this area have relied on volunteers using instrumented devices or using fields in the HTTP traffic such as User-Agent to identify the apps in network traces. However, the results of the former approach are difficult to be extrapolated to real-world scenario while the latter approach is not applicable to platforms like Android where developers generally use generic strings, that can not be used to identify the apps, in the User-Agent field. In this paper, we present a novel way of identifying Android apps in network traces using mobile in-app advertisements. Our preliminary experiments with real world traces show that this technique is promising for large scale mobile app usage pattern studies. We also present an analysis of the official Android market place from an advertising perspective. More... »
PAGES63-72
Passive and Active Measurement
ISBN
978-3-642-36515-7
978-3-642-36516-4
http://scigraph.springernature.com/pub.10.1007/978-3-642-36516-4_7
DOIhttp://dx.doi.org/10.1007/978-3-642-36516-4_7
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1018710951
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information Systems",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Narus Inc, USA",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Narus Inc, USA"
],
"type": "Organization"
},
"familyName": "Tongaonkar",
"givenName": "Alok",
"id": "sg:person.015067275573.41",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015067275573.41"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of California, Berkeley, USA",
"id": "http://www.grid.ac/institutes/grid.47840.3f",
"name": [
"Peking University, China",
"University of California, Berkeley, USA"
],
"type": "Organization"
},
"familyName": "Dai",
"givenName": "Shuaifu",
"id": "sg:person.012331252231.42",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012331252231.42"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Narus Inc, USA",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Narus Inc, USA"
],
"type": "Organization"
},
"familyName": "Nucci",
"givenName": "Antonio",
"id": "sg:person.011616757533.51",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011616757533.51"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of California, Berkeley, USA",
"id": "http://www.grid.ac/institutes/grid.47840.3f",
"name": [
"University of California, Berkeley, USA"
],
"type": "Organization"
},
"familyName": "Song",
"givenName": "Dawn",
"id": "sg:person.01143152610.86",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143152610.86"
],
"type": "Person"
}
],
"datePublished": "2013",
"datePublishedReg": "2013-01-01",
"description": "Recent years have seen an explosive growth in the number of mobile devices such as smart phones and tablets. This has resulted in a growing need of the operators to understand the usage patterns of the mobile apps used on these devices. Previous studies in this area have relied on volunteers using instrumented devices or using fields in the HTTP traffic such as User-Agent to identify the apps in network traces. However, the results of the former approach are difficult to be extrapolated to real-world scenario while the latter approach is not applicable to platforms like Android where developers generally use generic strings, that can not be used to identify the apps, in the User-Agent field. In this paper, we present a novel way of identifying Android apps in network traces using mobile in-app advertisements. Our preliminary experiments with real world traces show that this technique is promising for large scale mobile app usage pattern studies. We also present an analysis of the official Android market place from an advertising perspective.",
"editor": [
{
"familyName": "Roughan",
"givenName": "Matthew",
"type": "Person"
},
{
"familyName": "Chang",
"givenName": "Rocky",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-36516-4_7",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-642-36515-7",
"978-3-642-36516-4"
],
"name": "Passive and Active Measurement",
"type": "Book"
},
"keywords": [
"network traces",
"User-Agent field",
"app advertisements",
"Mobile App Usage Patterns",
"real-world traces",
"real-world scenarios",
"usage patterns",
"app usage patterns",
"user agents",
"HTTP traffic",
"mobile devices",
"Android apps",
"smart phones",
"mobile apps",
"explosive growth",
"apps",
"generic string",
"former approach",
"novel way",
"preliminary experiments",
"market place",
"Android",
"developers",
"recent years",
"devices",
"traces",
"phones",
"traffic",
"latter approach",
"platform",
"advertisements",
"scenarios",
"operators",
"strings",
"technique",
"way",
"field",
"need",
"advertising perspective",
"experiments",
"tablets",
"number",
"patterns",
"perspective",
"results",
"area",
"analysis",
"place",
"previous studies",
"study",
"years",
"Patterns Study",
"growth",
"volunteers",
"approach",
"paper"
],
"name": "Understanding Mobile App Usage Patterns Using In-App Advertisements",
"pagination": "63-72",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1018710951"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-36516-4_7"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-36516-4_7",
"https://app.dimensions.ai/details/publication/pub.1018710951"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:42",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_175.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-642-36516-4_7"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-36516-4_7'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-36516-4_7'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-36516-4_7'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-36516-4_7'
This table displays all metadata directly associated to this object as RDF triples.
146 TRIPLES
23 PREDICATES
82 URIs
75 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-642-36516-4_7 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0806 |
3 | ″ | schema:author | N58cf7458413444588d93d9bae5451a0c |
4 | ″ | schema:datePublished | 2013 |
5 | ″ | schema:datePublishedReg | 2013-01-01 |
6 | ″ | schema:description | Recent years have seen an explosive growth in the number of mobile devices such as smart phones and tablets. This has resulted in a growing need of the operators to understand the usage patterns of the mobile apps used on these devices. Previous studies in this area have relied on volunteers using instrumented devices or using fields in the HTTP traffic such as User-Agent to identify the apps in network traces. However, the results of the former approach are difficult to be extrapolated to real-world scenario while the latter approach is not applicable to platforms like Android where developers generally use generic strings, that can not be used to identify the apps, in the User-Agent field. In this paper, we present a novel way of identifying Android apps in network traces using mobile in-app advertisements. Our preliminary experiments with real world traces show that this technique is promising for large scale mobile app usage pattern studies. We also present an analysis of the official Android market place from an advertising perspective. |
7 | ″ | schema:editor | Ne843db21300e449e844b5c0e63eae60f |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | true |
11 | ″ | schema:isPartOf | Na21024fa2e66413abb41da64ac23dd42 |
12 | ″ | schema:keywords | Android |
13 | ″ | ″ | Android apps |
14 | ″ | ″ | HTTP traffic |
15 | ″ | ″ | Mobile App Usage Patterns |
16 | ″ | ″ | Patterns Study |
17 | ″ | ″ | User-Agent field |
18 | ″ | ″ | advertisements |
19 | ″ | ″ | advertising perspective |
20 | ″ | ″ | analysis |
21 | ″ | ″ | app advertisements |
22 | ″ | ″ | app usage patterns |
23 | ″ | ″ | approach |
24 | ″ | ″ | apps |
25 | ″ | ″ | area |
26 | ″ | ″ | developers |
27 | ″ | ″ | devices |
28 | ″ | ″ | experiments |
29 | ″ | ″ | explosive growth |
30 | ″ | ″ | field |
31 | ″ | ″ | former approach |
32 | ″ | ″ | generic string |
33 | ″ | ″ | growth |
34 | ″ | ″ | latter approach |
35 | ″ | ″ | market place |
36 | ″ | ″ | mobile apps |
37 | ″ | ″ | mobile devices |
38 | ″ | ″ | need |
39 | ″ | ″ | network traces |
40 | ″ | ″ | novel way |
41 | ″ | ″ | number |
42 | ″ | ″ | operators |
43 | ″ | ″ | paper |
44 | ″ | ″ | patterns |
45 | ″ | ″ | perspective |
46 | ″ | ″ | phones |
47 | ″ | ″ | place |
48 | ″ | ″ | platform |
49 | ″ | ″ | preliminary experiments |
50 | ″ | ″ | previous studies |
51 | ″ | ″ | real-world scenarios |
52 | ″ | ″ | real-world traces |
53 | ″ | ″ | recent years |
54 | ″ | ″ | results |
55 | ″ | ″ | scenarios |
56 | ″ | ″ | smart phones |
57 | ″ | ″ | strings |
58 | ″ | ″ | study |
59 | ″ | ″ | tablets |
60 | ″ | ″ | technique |
61 | ″ | ″ | traces |
62 | ″ | ″ | traffic |
63 | ″ | ″ | usage patterns |
64 | ″ | ″ | user agents |
65 | ″ | ″ | volunteers |
66 | ″ | ″ | way |
67 | ″ | ″ | years |
68 | ″ | schema:name | Understanding Mobile App Usage Patterns Using In-App Advertisements |
69 | ″ | schema:pagination | 63-72 |
70 | ″ | schema:productId | N76f7cc1953664ca69fe30d651a995c01 |
71 | ″ | ″ | Nfc397c5d5c544fbf85442f1ef6b68d52 |
72 | ″ | schema:publisher | Na3f83c9b822c4418944b4ae690da6b87 |
73 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1018710951 |
74 | ″ | ″ | https://doi.org/10.1007/978-3-642-36516-4_7 |
75 | ″ | schema:sdDatePublished | 2022-05-20T07:42 |
76 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
77 | ″ | schema:sdPublisher | Ndc2d2c345bef4ab59c4901b902354a4a |
78 | ″ | schema:url | https://doi.org/10.1007/978-3-642-36516-4_7 |
79 | ″ | sgo:license | sg:explorer/license/ |
80 | ″ | sgo:sdDataset | chapters |
81 | ″ | rdf:type | schema:Chapter |
82 | N58cf7458413444588d93d9bae5451a0c | rdf:first | sg:person.015067275573.41 |
83 | ″ | rdf:rest | N91a0da951d4048c4815031862856b641 |
84 | N76f7cc1953664ca69fe30d651a995c01 | schema:name | dimensions_id |
85 | ″ | schema:value | pub.1018710951 |
86 | ″ | rdf:type | schema:PropertyValue |
87 | N91a0da951d4048c4815031862856b641 | rdf:first | sg:person.012331252231.42 |
88 | ″ | rdf:rest | Nfa6c9c11f3a9488fb3da322fc5521cda |
89 | Na21024fa2e66413abb41da64ac23dd42 | schema:isbn | 978-3-642-36515-7 |
90 | ″ | ″ | 978-3-642-36516-4 |
91 | ″ | schema:name | Passive and Active Measurement |
92 | ″ | rdf:type | schema:Book |
93 | Na3f83c9b822c4418944b4ae690da6b87 | schema:name | Springer Nature |
94 | ″ | rdf:type | schema:Organisation |
95 | Na7f138d3f44a48cba7bb1118be1157d5 | schema:familyName | Roughan |
96 | ″ | schema:givenName | Matthew |
97 | ″ | rdf:type | schema:Person |
98 | Nc0b088a3aa2a4f29932f10eae04d8793 | rdf:first | sg:person.01143152610.86 |
99 | ″ | rdf:rest | rdf:nil |
100 | Nd034522da0214f1686f314d771c9933a | schema:familyName | Chang |
101 | ″ | schema:givenName | Rocky |
102 | ″ | rdf:type | schema:Person |
103 | Nd12f9a1910a04976ad42bf0b84416bc4 | rdf:first | Nd034522da0214f1686f314d771c9933a |
104 | ″ | rdf:rest | rdf:nil |
105 | Ndc2d2c345bef4ab59c4901b902354a4a | schema:name | Springer Nature - SN SciGraph project |
106 | ″ | rdf:type | schema:Organization |
107 | Ne843db21300e449e844b5c0e63eae60f | rdf:first | Na7f138d3f44a48cba7bb1118be1157d5 |
108 | ″ | rdf:rest | Nd12f9a1910a04976ad42bf0b84416bc4 |
109 | Nfa6c9c11f3a9488fb3da322fc5521cda | rdf:first | sg:person.011616757533.51 |
110 | ″ | rdf:rest | Nc0b088a3aa2a4f29932f10eae04d8793 |
111 | Nfc397c5d5c544fbf85442f1ef6b68d52 | schema:name | doi |
112 | ″ | schema:value | 10.1007/978-3-642-36516-4_7 |
113 | ″ | rdf:type | schema:PropertyValue |
114 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
115 | ″ | schema:name | Information and Computing Sciences |
116 | ″ | rdf:type | schema:DefinedTerm |
117 | anzsrc-for:0806 | schema:inDefinedTermSet | anzsrc-for: |
118 | ″ | schema:name | Information Systems |
119 | ″ | rdf:type | schema:DefinedTerm |
120 | sg:person.01143152610.86 | schema:affiliation | grid-institutes:grid.47840.3f |
121 | ″ | schema:familyName | Song |
122 | ″ | schema:givenName | Dawn |
123 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143152610.86 |
124 | ″ | rdf:type | schema:Person |
125 | sg:person.011616757533.51 | schema:affiliation | grid-institutes:None |
126 | ″ | schema:familyName | Nucci |
127 | ″ | schema:givenName | Antonio |
128 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011616757533.51 |
129 | ″ | rdf:type | schema:Person |
130 | sg:person.012331252231.42 | schema:affiliation | grid-institutes:grid.47840.3f |
131 | ″ | schema:familyName | Dai |
132 | ″ | schema:givenName | Shuaifu |
133 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012331252231.42 |
134 | ″ | rdf:type | schema:Person |
135 | sg:person.015067275573.41 | schema:affiliation | grid-institutes:None |
136 | ″ | schema:familyName | Tongaonkar |
137 | ″ | schema:givenName | Alok |
138 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015067275573.41 |
139 | ″ | rdf:type | schema:Person |
140 | grid-institutes:None | schema:alternateName | Narus Inc, USA |
141 | ″ | schema:name | Narus Inc, USA |
142 | ″ | rdf:type | schema:Organization |
143 | grid-institutes:grid.47840.3f | schema:alternateName | University of California, Berkeley, USA |
144 | ″ | schema:name | Peking University, China |
145 | ″ | ″ | University of California, Berkeley, USA |
146 | ″ | rdf:type | schema:Organization |