Event Argument Extraction Based on CRF View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013

AUTHORS

Libin Hou , Peifeng Li , Qiaoming Zhu , Yuan Cao

ABSTRACT

Event argument extraction is an important component of event extraction which plays a decisive role in whether event extraction can be applied to the actual. This paper proposes a method of event argument extraction based on Conditional Random Fields (CRFs). After employing frequently used features, we summarize all the features into five categories, i.e., lexical, semantic, dependency, syntactic and relative-position. More importantly, we propose using semantic role as a specific feature. Great efforts have been made to evaluate the performance by exploring various features and their combination. Experimental results show that semantic role is a good indicator for event argument extraction. More... »

PAGES

32-39

References to SciGraph publications

  • 2008. Syntactic Parsing with Hierarchical Modeling in INFORMATION RETRIEVAL TECHNOLOGY
  • Book

    TITLE

    Chinese Lexical Semantics

    ISBN

    978-3-642-36336-8
    978-3-642-36337-5

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-642-36337-5_4

    DOI

    http://dx.doi.org/10.1007/978-3-642-36337-5_4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1019999426


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology and Cognitive Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Soochow University", 
              "id": "https://www.grid.ac/institutes/grid.263761.7", 
              "name": [
                "Natural Language Processing Lab, Soochow University, Suzhou, Jiangsu, 215006, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hou", 
            "givenName": "Libin", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Soochow University", 
              "id": "https://www.grid.ac/institutes/grid.263761.7", 
              "name": [
                "Natural Language Processing Lab, Soochow University, Suzhou, Jiangsu, 215006, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Peifeng", 
            "id": "sg:person.014652155755.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014652155755.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Soochow University", 
              "id": "https://www.grid.ac/institutes/grid.263761.7", 
              "name": [
                "Natural Language Processing Lab, Soochow University, Suzhou, Jiangsu, 215006, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhu", 
            "givenName": "Qiaoming", 
            "id": "sg:person.012507537753.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012507537753.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Soochow University", 
              "id": "https://www.grid.ac/institutes/grid.263761.7", 
              "name": [
                "Natural Language Processing Lab, Soochow University, Suzhou, Jiangsu, 215006, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cao", 
            "givenName": "Yuan", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-540-68636-1_64", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000507465", 
              "https://doi.org/10.1007/978-3-540-68636-1_64"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-68636-1_64", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000507465", 
              "https://doi.org/10.1007/978-3-540-68636-1_64"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013", 
        "datePublishedReg": "2013-01-01", 
        "description": "Event argument extraction is an important component of event extraction which plays a decisive role in whether event extraction can be applied to the actual. This paper proposes a method of event argument extraction based on Conditional Random Fields (CRFs). After employing frequently used features, we summarize all the features into five categories, i.e., lexical, semantic, dependency, syntactic and relative-position. More importantly, we propose using semantic role as a specific feature. Great efforts have been made to evaluate the performance by exploring various features and their combination. Experimental results show that semantic role is a good indicator for event argument extraction.", 
        "editor": [
          {
            "familyName": "Ji", 
            "givenName": "Donghong", 
            "type": "Person"
          }, 
          {
            "familyName": "Xiao", 
            "givenName": "Guozheng", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-642-36337-5_4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-642-36336-8", 
            "978-3-642-36337-5"
          ], 
          "name": "Chinese Lexical Semantics", 
          "type": "Book"
        }, 
        "name": "Event Argument Extraction Based on CRF", 
        "pagination": "32-39", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-642-36337-5_4"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "5f4a3f67d4a9e9199a24ea6fbb4334a423928ff6ab4a31c51a1fadc6207a8524"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1019999426"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-642-36337-5_4", 
          "https://app.dimensions.ai/details/publication/pub.1019999426"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T14:24", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000255.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-642-36337-5_4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-36337-5_4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-36337-5_4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-36337-5_4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-36337-5_4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    93 TRIPLES      23 PREDICATES      28 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-642-36337-5_4 schema:about anzsrc-for:17
    2 anzsrc-for:1701
    3 schema:author Nd6c07e3367364bc8bfcca0a63f42c1e5
    4 schema:citation sg:pub.10.1007/978-3-540-68636-1_64
    5 schema:datePublished 2013
    6 schema:datePublishedReg 2013-01-01
    7 schema:description Event argument extraction is an important component of event extraction which plays a decisive role in whether event extraction can be applied to the actual. This paper proposes a method of event argument extraction based on Conditional Random Fields (CRFs). After employing frequently used features, we summarize all the features into five categories, i.e., lexical, semantic, dependency, syntactic and relative-position. More importantly, we propose using semantic role as a specific feature. Great efforts have been made to evaluate the performance by exploring various features and their combination. Experimental results show that semantic role is a good indicator for event argument extraction.
    8 schema:editor Nd2f78f392fc04452aeb0fd0a1dbc1797
    9 schema:genre chapter
    10 schema:inLanguage en
    11 schema:isAccessibleForFree false
    12 schema:isPartOf N1ee41a08b72e42c2a76abef1e4e3ad1d
    13 schema:name Event Argument Extraction Based on CRF
    14 schema:pagination 32-39
    15 schema:productId N64356b70404f4c77901412fceda73367
    16 N852ae9969b9a4309a249f890d7c4fb99
    17 Nae7416c011274826af6f1e5e166c34d1
    18 schema:publisher Na3a391099cbe46319c848368e8a166a5
    19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019999426
    20 https://doi.org/10.1007/978-3-642-36337-5_4
    21 schema:sdDatePublished 2019-04-15T14:24
    22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    23 schema:sdPublisher Nbebbd704d9b348cd840e3e30cde2083c
    24 schema:url http://link.springer.com/10.1007/978-3-642-36337-5_4
    25 sgo:license sg:explorer/license/
    26 sgo:sdDataset chapters
    27 rdf:type schema:Chapter
    28 N027fa72a4b7048aa9d928b26f51f9a55 schema:familyName Ji
    29 schema:givenName Donghong
    30 rdf:type schema:Person
    31 N14a49d2018d149959502c7d7ed708a41 rdf:first sg:person.012507537753.51
    32 rdf:rest N1b9f8004eced486bbeca54131215cb32
    33 N1b9f8004eced486bbeca54131215cb32 rdf:first N309eb530aa7d4bac8718212fce000577
    34 rdf:rest rdf:nil
    35 N1ee41a08b72e42c2a76abef1e4e3ad1d schema:isbn 978-3-642-36336-8
    36 978-3-642-36337-5
    37 schema:name Chinese Lexical Semantics
    38 rdf:type schema:Book
    39 N2464f47e12ef49938a1b450bc3ff39d4 rdf:first sg:person.014652155755.35
    40 rdf:rest N14a49d2018d149959502c7d7ed708a41
    41 N309eb530aa7d4bac8718212fce000577 schema:affiliation https://www.grid.ac/institutes/grid.263761.7
    42 schema:familyName Cao
    43 schema:givenName Yuan
    44 rdf:type schema:Person
    45 N3b9ef8c8248849b79f318d8ab56580e2 schema:familyName Xiao
    46 schema:givenName Guozheng
    47 rdf:type schema:Person
    48 N64356b70404f4c77901412fceda73367 schema:name dimensions_id
    49 schema:value pub.1019999426
    50 rdf:type schema:PropertyValue
    51 N852ae9969b9a4309a249f890d7c4fb99 schema:name doi
    52 schema:value 10.1007/978-3-642-36337-5_4
    53 rdf:type schema:PropertyValue
    54 Na3a391099cbe46319c848368e8a166a5 schema:location Berlin, Heidelberg
    55 schema:name Springer Berlin Heidelberg
    56 rdf:type schema:Organisation
    57 Na6a9d5a646f1480ba189accadb0cbbbe rdf:first N3b9ef8c8248849b79f318d8ab56580e2
    58 rdf:rest rdf:nil
    59 Nae7416c011274826af6f1e5e166c34d1 schema:name readcube_id
    60 schema:value 5f4a3f67d4a9e9199a24ea6fbb4334a423928ff6ab4a31c51a1fadc6207a8524
    61 rdf:type schema:PropertyValue
    62 Nbebbd704d9b348cd840e3e30cde2083c schema:name Springer Nature - SN SciGraph project
    63 rdf:type schema:Organization
    64 Ncd098f7c7f5444688922ef8e68a175ca schema:affiliation https://www.grid.ac/institutes/grid.263761.7
    65 schema:familyName Hou
    66 schema:givenName Libin
    67 rdf:type schema:Person
    68 Nd2f78f392fc04452aeb0fd0a1dbc1797 rdf:first N027fa72a4b7048aa9d928b26f51f9a55
    69 rdf:rest Na6a9d5a646f1480ba189accadb0cbbbe
    70 Nd6c07e3367364bc8bfcca0a63f42c1e5 rdf:first Ncd098f7c7f5444688922ef8e68a175ca
    71 rdf:rest N2464f47e12ef49938a1b450bc3ff39d4
    72 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
    73 schema:name Psychology and Cognitive Sciences
    74 rdf:type schema:DefinedTerm
    75 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Psychology
    77 rdf:type schema:DefinedTerm
    78 sg:person.012507537753.51 schema:affiliation https://www.grid.ac/institutes/grid.263761.7
    79 schema:familyName Zhu
    80 schema:givenName Qiaoming
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012507537753.51
    82 rdf:type schema:Person
    83 sg:person.014652155755.35 schema:affiliation https://www.grid.ac/institutes/grid.263761.7
    84 schema:familyName Li
    85 schema:givenName Peifeng
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014652155755.35
    87 rdf:type schema:Person
    88 sg:pub.10.1007/978-3-540-68636-1_64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000507465
    89 https://doi.org/10.1007/978-3-540-68636-1_64
    90 rdf:type schema:CreativeWork
    91 https://www.grid.ac/institutes/grid.263761.7 schema:alternateName Soochow University
    92 schema:name Natural Language Processing Lab, Soochow University, Suzhou, Jiangsu, 215006, China
    93 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...