Towards Automatic Music Performance Comparison with the Multiple Sequence Alignment Technique View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013

AUTHORS

Chih-Chin Liu

ABSTRACT

In this paper, we propose an approach towards automatic music performance comparison based on the multiple sequence alignment technique. In this approach, the onset detection technique is first applied to the multi-version recordings of the same music work. The signal between two adjacent onsets is represented with its corresponding chroma feature vector and symbolized as a chroma symbol. Thus a piece of music signal can be transformed into its associated chroma string. The progressive multiple sequence alignment technique is applied to these chroma strings to find a global alignment for multiple performances. After these chroma strings are aligned, dynamics and tempo comparisons among the multi-version performances can be carried out in various scale such as a note, a phrase, or the whole song. Nine versions of CD recordings on Sonatas and Partitas for Violin Solo, composed by Johann Sebastian Bach, are selected as the data set for the experiments. A phynogenetic tree for the nine performances can be automatically generated based on the distance matrix of their aligned chroma strings. More... »

PAGES

391-402

References to SciGraph publications

Book

TITLE

Advances in Multimedia Modeling

ISBN

978-3-642-35724-4
978-3-642-35725-1

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-35725-1_36

DOI

http://dx.doi.org/10.1007/978-3-642-35725-1_36

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053370004


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chung Hua University", 
          "id": "https://www.grid.ac/institutes/grid.411655.2", 
          "name": [
            "Department of Bioinformatics, Chung Hua University, Hsin-Chu City, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Chih-Chin", 
        "id": "sg:person.01143604600.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143604600.80"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0022-2836(70)90057-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021169618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02603120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022962956", 
          "https://doi.org/10.1007/bf02603120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02603120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022962956", 
          "https://doi.org/10.1007/bf02603120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-74048-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030350429", 
          "https://doi.org/10.1007/978-3-540-74048-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-74048-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030350429", 
          "https://doi.org/10.1007/978-3-540-74048-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.86.12.4412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033409872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/22.22.4673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042438223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09298210802711660", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045805139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/h0027237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052510118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/11.2.181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059413478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.761266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.18626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061178979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.1974.1100705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061471419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tassp.1980.1163491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061518769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmm.2004.840597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061697047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.1919362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062283379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0148063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062840630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a040454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079752303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/aspaa.2003.1285862", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093484741"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "In this paper, we propose an approach towards automatic music performance comparison based on the multiple sequence alignment technique. In this approach, the onset detection technique is first applied to the multi-version recordings of the same music work. The signal between two adjacent onsets is represented with its corresponding chroma feature vector and symbolized as a chroma symbol. Thus a piece of music signal can be transformed into its associated chroma string. The progressive multiple sequence alignment technique is applied to these chroma strings to find a global alignment for multiple performances. After these chroma strings are aligned, dynamics and tempo comparisons among the multi-version performances can be carried out in various scale such as a note, a phrase, or the whole song. Nine versions of CD recordings on Sonatas and Partitas for Violin Solo, composed by Johann Sebastian Bach, are selected as the data set for the experiments. A phynogenetic tree for the nine performances can be automatically generated based on the distance matrix of their aligned chroma strings.", 
    "editor": [
      {
        "familyName": "Li", 
        "givenName": "Shipeng", 
        "type": "Person"
      }, 
      {
        "familyName": "El Saddik", 
        "givenName": "Abdulmotaleb", 
        "type": "Person"
      }, 
      {
        "familyName": "Wang", 
        "givenName": "Meng", 
        "type": "Person"
      }, 
      {
        "familyName": "Mei", 
        "givenName": "Tao", 
        "type": "Person"
      }, 
      {
        "familyName": "Sebe", 
        "givenName": "Nicu", 
        "type": "Person"
      }, 
      {
        "familyName": "Yan", 
        "givenName": "Shuicheng", 
        "type": "Person"
      }, 
      {
        "familyName": "Hong", 
        "givenName": "Richang", 
        "type": "Person"
      }, 
      {
        "familyName": "Gurrin", 
        "givenName": "Cathal", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-35725-1_36", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-35724-4", 
        "978-3-642-35725-1"
      ], 
      "name": "Advances in Multimedia Modeling", 
      "type": "Book"
    }, 
    "name": "Towards Automatic Music Performance Comparison with the Multiple Sequence Alignment Technique", 
    "pagination": "391-402", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-35725-1_36"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fe3594e3741c612369de14dea53763c00e9e1a0c620fcdea12dfc01603b854a1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053370004"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-35725-1_36", 
      "https://app.dimensions.ai/details/publication/pub.1053370004"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T00:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000467.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-35725-1_36"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-35725-1_36'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-35725-1_36'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-35725-1_36'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-35725-1_36'


 

This table displays all metadata directly associated to this object as RDF triples.

153 TRIPLES      23 PREDICATES      44 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-35725-1_36 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Ne7e06eafb7494179bdc56cc7a943a476
4 schema:citation sg:pub.10.1007/978-3-540-74048-3
5 sg:pub.10.1007/bf02603120
6 https://doi.org/10.1016/0022-2836(70)90057-4
7 https://doi.org/10.1037/h0027237
8 https://doi.org/10.1073/pnas.86.12.4412
9 https://doi.org/10.1080/09298210802711660
10 https://doi.org/10.1093/bioinformatics/11.2.181
11 https://doi.org/10.1093/nar/22.22.4673
12 https://doi.org/10.1093/oxfordjournals.molbev.a040454
13 https://doi.org/10.1109/34.761266
14 https://doi.org/10.1109/5.18626
15 https://doi.org/10.1109/aspaa.2003.1285862
16 https://doi.org/10.1109/tac.1974.1100705
17 https://doi.org/10.1109/tassp.1980.1163491
18 https://doi.org/10.1109/tmm.2004.840597
19 https://doi.org/10.1121/1.1919362
20 https://doi.org/10.1137/0148063
21 schema:datePublished 2013
22 schema:datePublishedReg 2013-01-01
23 schema:description In this paper, we propose an approach towards automatic music performance comparison based on the multiple sequence alignment technique. In this approach, the onset detection technique is first applied to the multi-version recordings of the same music work. The signal between two adjacent onsets is represented with its corresponding chroma feature vector and symbolized as a chroma symbol. Thus a piece of music signal can be transformed into its associated chroma string. The progressive multiple sequence alignment technique is applied to these chroma strings to find a global alignment for multiple performances. After these chroma strings are aligned, dynamics and tempo comparisons among the multi-version performances can be carried out in various scale such as a note, a phrase, or the whole song. Nine versions of CD recordings on Sonatas and Partitas for Violin Solo, composed by Johann Sebastian Bach, are selected as the data set for the experiments. A phynogenetic tree for the nine performances can be automatically generated based on the distance matrix of their aligned chroma strings.
24 schema:editor N9594381e2c4e4991a0bc719fe553169c
25 schema:genre chapter
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N4751d36bc7c3404d900a87eaf7ae5226
29 schema:name Towards Automatic Music Performance Comparison with the Multiple Sequence Alignment Technique
30 schema:pagination 391-402
31 schema:productId N11b45d0d386047ab8f5b53e96d3f6c7d
32 N2755d95e9cfe408f85fcd2b754a415cd
33 N6f664a378e4648c2975b66215dd87683
34 schema:publisher N2f0be44b80cd4dca808798d7d0e15265
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053370004
36 https://doi.org/10.1007/978-3-642-35725-1_36
37 schema:sdDatePublished 2019-04-16T00:14
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher Ne2af5f1df5904cf295410f30d5deefe5
40 schema:url http://link.springer.com/10.1007/978-3-642-35725-1_36
41 sgo:license sg:explorer/license/
42 sgo:sdDataset chapters
43 rdf:type schema:Chapter
44 N00364a1027da4eabba10f07f831f0e9e schema:familyName Gurrin
45 schema:givenName Cathal
46 rdf:type schema:Person
47 N11b45d0d386047ab8f5b53e96d3f6c7d schema:name doi
48 schema:value 10.1007/978-3-642-35725-1_36
49 rdf:type schema:PropertyValue
50 N2054175e0f1241969fc3f12705cabe72 schema:familyName Yan
51 schema:givenName Shuicheng
52 rdf:type schema:Person
53 N24cfcf5282a04ff89d7c01d7ff22f213 rdf:first N4a0c9b31cfe34c24b6eff84c89c6f5bf
54 rdf:rest Nff6ff290aa144a9f81c6139e0e17ea88
55 N2755d95e9cfe408f85fcd2b754a415cd schema:name dimensions_id
56 schema:value pub.1053370004
57 rdf:type schema:PropertyValue
58 N2c94c01b7e7c4614854cf99bd6b2d351 rdf:first N3499634e29cf48598e10ca988d803baa
59 rdf:rest Ne8a4b126092141368dd9ec48b24a0aa5
60 N2f0be44b80cd4dca808798d7d0e15265 schema:location Berlin, Heidelberg
61 schema:name Springer Berlin Heidelberg
62 rdf:type schema:Organisation
63 N3499634e29cf48598e10ca988d803baa schema:familyName Hong
64 schema:givenName Richang
65 rdf:type schema:Person
66 N4751d36bc7c3404d900a87eaf7ae5226 schema:isbn 978-3-642-35724-4
67 978-3-642-35725-1
68 schema:name Advances in Multimedia Modeling
69 rdf:type schema:Book
70 N48b95009e9b64e5eb636d36a20aeca37 rdf:first Nf20e36f3f2f14b23b4d84636e143c889
71 rdf:rest Nbf4a479a3e0246428fa1604ce9867886
72 N4a0c9b31cfe34c24b6eff84c89c6f5bf schema:familyName Mei
73 schema:givenName Tao
74 rdf:type schema:Person
75 N5b4ed0bde5894819b890d98c33dcbc8c schema:familyName Sebe
76 schema:givenName Nicu
77 rdf:type schema:Person
78 N6f664a378e4648c2975b66215dd87683 schema:name readcube_id
79 schema:value fe3594e3741c612369de14dea53763c00e9e1a0c620fcdea12dfc01603b854a1
80 rdf:type schema:PropertyValue
81 N7660c8ab551f440d86a565e2d50b7bb7 schema:familyName Li
82 schema:givenName Shipeng
83 rdf:type schema:Person
84 N8c682c62f4144cf89450f55834285b42 rdf:first N2054175e0f1241969fc3f12705cabe72
85 rdf:rest N2c94c01b7e7c4614854cf99bd6b2d351
86 N9594381e2c4e4991a0bc719fe553169c rdf:first N7660c8ab551f440d86a565e2d50b7bb7
87 rdf:rest N48b95009e9b64e5eb636d36a20aeca37
88 Nbf4a479a3e0246428fa1604ce9867886 rdf:first Ne8068a2a776b49598cf3725a5e6eb4c6
89 rdf:rest N24cfcf5282a04ff89d7c01d7ff22f213
90 Ne2af5f1df5904cf295410f30d5deefe5 schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 Ne7e06eafb7494179bdc56cc7a943a476 rdf:first sg:person.01143604600.80
93 rdf:rest rdf:nil
94 Ne8068a2a776b49598cf3725a5e6eb4c6 schema:familyName Wang
95 schema:givenName Meng
96 rdf:type schema:Person
97 Ne8a4b126092141368dd9ec48b24a0aa5 rdf:first N00364a1027da4eabba10f07f831f0e9e
98 rdf:rest rdf:nil
99 Nf20e36f3f2f14b23b4d84636e143c889 schema:familyName El Saddik
100 schema:givenName Abdulmotaleb
101 rdf:type schema:Person
102 Nff6ff290aa144a9f81c6139e0e17ea88 rdf:first N5b4ed0bde5894819b890d98c33dcbc8c
103 rdf:rest N8c682c62f4144cf89450f55834285b42
104 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
105 schema:name Information and Computing Sciences
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
108 schema:name Information Systems
109 rdf:type schema:DefinedTerm
110 sg:person.01143604600.80 schema:affiliation https://www.grid.ac/institutes/grid.411655.2
111 schema:familyName Liu
112 schema:givenName Chih-Chin
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143604600.80
114 rdf:type schema:Person
115 sg:pub.10.1007/978-3-540-74048-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030350429
116 https://doi.org/10.1007/978-3-540-74048-3
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/bf02603120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022962956
119 https://doi.org/10.1007/bf02603120
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/0022-2836(70)90057-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021169618
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1037/h0027237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052510118
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1073/pnas.86.12.4412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033409872
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1080/09298210802711660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045805139
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1093/bioinformatics/11.2.181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059413478
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1093/nar/22.22.4673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042438223
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1093/oxfordjournals.molbev.a040454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079752303
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/34.761266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156945
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/5.18626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061178979
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/aspaa.2003.1285862 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093484741
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/tac.1974.1100705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061471419
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/tassp.1980.1163491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061518769
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/tmm.2004.840597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061697047
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1121/1.1919362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062283379
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1137/0148063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062840630
150 rdf:type schema:CreativeWork
151 https://www.grid.ac/institutes/grid.411655.2 schema:alternateName Chung Hua University
152 schema:name Department of Bioinformatics, Chung Hua University, Hsin-Chu City, Taiwan
153 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...