Towards Automatic Music Performance Comparison with the Multiple Sequence Alignment Technique View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013

AUTHORS

Chih-Chin Liu

ABSTRACT

In this paper, we propose an approach towards automatic music performance comparison based on the multiple sequence alignment technique. In this approach, the onset detection technique is first applied to the multi-version recordings of the same music work. The signal between two adjacent onsets is represented with its corresponding chroma feature vector and symbolized as a chroma symbol. Thus a piece of music signal can be transformed into its associated chroma string. The progressive multiple sequence alignment technique is applied to these chroma strings to find a global alignment for multiple performances. After these chroma strings are aligned, dynamics and tempo comparisons among the multi-version performances can be carried out in various scale such as a note, a phrase, or the whole song. Nine versions of CD recordings on Sonatas and Partitas for Violin Solo, composed by Johann Sebastian Bach, are selected as the data set for the experiments. A phynogenetic tree for the nine performances can be automatically generated based on the distance matrix of their aligned chroma strings. More... »

PAGES

391-402

References to SciGraph publications

Book

TITLE

Advances in Multimedia Modeling

ISBN

978-3-642-35724-4
978-3-642-35725-1

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-35725-1_36

DOI

http://dx.doi.org/10.1007/978-3-642-35725-1_36

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053370004


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chung Hua University", 
          "id": "https://www.grid.ac/institutes/grid.411655.2", 
          "name": [
            "Department of Bioinformatics, Chung Hua University, Hsin-Chu City, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Chih-Chin", 
        "id": "sg:person.01143604600.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143604600.80"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0022-2836(70)90057-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021169618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02603120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022962956", 
          "https://doi.org/10.1007/bf02603120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02603120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022962956", 
          "https://doi.org/10.1007/bf02603120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-74048-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030350429", 
          "https://doi.org/10.1007/978-3-540-74048-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-74048-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030350429", 
          "https://doi.org/10.1007/978-3-540-74048-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.86.12.4412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033409872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/22.22.4673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042438223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09298210802711660", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045805139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/h0027237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052510118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/11.2.181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059413478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.761266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.18626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061178979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.1974.1100705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061471419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tassp.1980.1163491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061518769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmm.2004.840597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061697047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.1919362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062283379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0148063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062840630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a040454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079752303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/aspaa.2003.1285862", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093484741"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "In this paper, we propose an approach towards automatic music performance comparison based on the multiple sequence alignment technique. In this approach, the onset detection technique is first applied to the multi-version recordings of the same music work. The signal between two adjacent onsets is represented with its corresponding chroma feature vector and symbolized as a chroma symbol. Thus a piece of music signal can be transformed into its associated chroma string. The progressive multiple sequence alignment technique is applied to these chroma strings to find a global alignment for multiple performances. After these chroma strings are aligned, dynamics and tempo comparisons among the multi-version performances can be carried out in various scale such as a note, a phrase, or the whole song. Nine versions of CD recordings on Sonatas and Partitas for Violin Solo, composed by Johann Sebastian Bach, are selected as the data set for the experiments. A phynogenetic tree for the nine performances can be automatically generated based on the distance matrix of their aligned chroma strings.", 
    "editor": [
      {
        "familyName": "Li", 
        "givenName": "Shipeng", 
        "type": "Person"
      }, 
      {
        "familyName": "El Saddik", 
        "givenName": "Abdulmotaleb", 
        "type": "Person"
      }, 
      {
        "familyName": "Wang", 
        "givenName": "Meng", 
        "type": "Person"
      }, 
      {
        "familyName": "Mei", 
        "givenName": "Tao", 
        "type": "Person"
      }, 
      {
        "familyName": "Sebe", 
        "givenName": "Nicu", 
        "type": "Person"
      }, 
      {
        "familyName": "Yan", 
        "givenName": "Shuicheng", 
        "type": "Person"
      }, 
      {
        "familyName": "Hong", 
        "givenName": "Richang", 
        "type": "Person"
      }, 
      {
        "familyName": "Gurrin", 
        "givenName": "Cathal", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-35725-1_36", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-35724-4", 
        "978-3-642-35725-1"
      ], 
      "name": "Advances in Multimedia Modeling", 
      "type": "Book"
    }, 
    "name": "Towards Automatic Music Performance Comparison with the Multiple Sequence Alignment Technique", 
    "pagination": "391-402", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-35725-1_36"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fe3594e3741c612369de14dea53763c00e9e1a0c620fcdea12dfc01603b854a1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053370004"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-35725-1_36", 
      "https://app.dimensions.ai/details/publication/pub.1053370004"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T00:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000467.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-35725-1_36"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-35725-1_36'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-35725-1_36'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-35725-1_36'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-35725-1_36'


 

This table displays all metadata directly associated to this object as RDF triples.

153 TRIPLES      23 PREDICATES      44 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-35725-1_36 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Nb0f4707459154520835557bb342173b4
4 schema:citation sg:pub.10.1007/978-3-540-74048-3
5 sg:pub.10.1007/bf02603120
6 https://doi.org/10.1016/0022-2836(70)90057-4
7 https://doi.org/10.1037/h0027237
8 https://doi.org/10.1073/pnas.86.12.4412
9 https://doi.org/10.1080/09298210802711660
10 https://doi.org/10.1093/bioinformatics/11.2.181
11 https://doi.org/10.1093/nar/22.22.4673
12 https://doi.org/10.1093/oxfordjournals.molbev.a040454
13 https://doi.org/10.1109/34.761266
14 https://doi.org/10.1109/5.18626
15 https://doi.org/10.1109/aspaa.2003.1285862
16 https://doi.org/10.1109/tac.1974.1100705
17 https://doi.org/10.1109/tassp.1980.1163491
18 https://doi.org/10.1109/tmm.2004.840597
19 https://doi.org/10.1121/1.1919362
20 https://doi.org/10.1137/0148063
21 schema:datePublished 2013
22 schema:datePublishedReg 2013-01-01
23 schema:description In this paper, we propose an approach towards automatic music performance comparison based on the multiple sequence alignment technique. In this approach, the onset detection technique is first applied to the multi-version recordings of the same music work. The signal between two adjacent onsets is represented with its corresponding chroma feature vector and symbolized as a chroma symbol. Thus a piece of music signal can be transformed into its associated chroma string. The progressive multiple sequence alignment technique is applied to these chroma strings to find a global alignment for multiple performances. After these chroma strings are aligned, dynamics and tempo comparisons among the multi-version performances can be carried out in various scale such as a note, a phrase, or the whole song. Nine versions of CD recordings on Sonatas and Partitas for Violin Solo, composed by Johann Sebastian Bach, are selected as the data set for the experiments. A phynogenetic tree for the nine performances can be automatically generated based on the distance matrix of their aligned chroma strings.
24 schema:editor N2ad2e84e934a4e8981680b760bbed76d
25 schema:genre chapter
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf Nee46b05b61494248851a0fc3f2e8e9cc
29 schema:name Towards Automatic Music Performance Comparison with the Multiple Sequence Alignment Technique
30 schema:pagination 391-402
31 schema:productId N139ba9e9c89a4d78b348c94695676c9c
32 N4ca88f15fbd54052993da24ffb0d04fd
33 Nebaf05f51cd14e96b2283f67e295e983
34 schema:publisher N2a4b0dfe80974feda4f48207ef8ecb7c
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053370004
36 https://doi.org/10.1007/978-3-642-35725-1_36
37 schema:sdDatePublished 2019-04-16T00:14
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N60248aed0de6499c9bf256034a530be8
40 schema:url http://link.springer.com/10.1007/978-3-642-35725-1_36
41 sgo:license sg:explorer/license/
42 sgo:sdDataset chapters
43 rdf:type schema:Chapter
44 N0618f827d34446e79fbba2f225f3f447 rdf:first N8ccc203e08474910a4539be668a7ceef
45 rdf:rest Ncf57f4512b8743e1bd64374bb5265ae3
46 N0771b47eebd342dfa1feb29c9a9bab5f schema:familyName El Saddik
47 schema:givenName Abdulmotaleb
48 rdf:type schema:Person
49 N09770de1281443dbbabe66b5951d9428 schema:familyName Gurrin
50 schema:givenName Cathal
51 rdf:type schema:Person
52 N0cc376b314ce48bc9effe47e18a8ae7c schema:familyName Wang
53 schema:givenName Meng
54 rdf:type schema:Person
55 N0cfd20271e9a4527ac163d69c22ab078 schema:familyName Sebe
56 schema:givenName Nicu
57 rdf:type schema:Person
58 N139ba9e9c89a4d78b348c94695676c9c schema:name dimensions_id
59 schema:value pub.1053370004
60 rdf:type schema:PropertyValue
61 N1bbb664c87b54bb6b457a0e8c2c12007 schema:familyName Yan
62 schema:givenName Shuicheng
63 rdf:type schema:Person
64 N2a4b0dfe80974feda4f48207ef8ecb7c schema:location Berlin, Heidelberg
65 schema:name Springer Berlin Heidelberg
66 rdf:type schema:Organisation
67 N2ad2e84e934a4e8981680b760bbed76d rdf:first N62bb0eebbbf84fdca549399c6b56a7ac
68 rdf:rest Nd35d3290fffd4a8ab2dcd347a707002b
69 N44bd4f58026b4e62b86cbc9e07c119a3 rdf:first N0cc376b314ce48bc9effe47e18a8ae7c
70 rdf:rest N0618f827d34446e79fbba2f225f3f447
71 N492a544d669440d1a322511a74be93ba schema:familyName Hong
72 schema:givenName Richang
73 rdf:type schema:Person
74 N4a8c0b4eee244f809ec849e2fdc6e261 rdf:first N492a544d669440d1a322511a74be93ba
75 rdf:rest Na18471c22a3d4018a70054657ce50979
76 N4ca88f15fbd54052993da24ffb0d04fd schema:name doi
77 schema:value 10.1007/978-3-642-35725-1_36
78 rdf:type schema:PropertyValue
79 N60248aed0de6499c9bf256034a530be8 schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 N62bb0eebbbf84fdca549399c6b56a7ac schema:familyName Li
82 schema:givenName Shipeng
83 rdf:type schema:Person
84 N8ccc203e08474910a4539be668a7ceef schema:familyName Mei
85 schema:givenName Tao
86 rdf:type schema:Person
87 Na18471c22a3d4018a70054657ce50979 rdf:first N09770de1281443dbbabe66b5951d9428
88 rdf:rest rdf:nil
89 Nb0f4707459154520835557bb342173b4 rdf:first sg:person.01143604600.80
90 rdf:rest rdf:nil
91 Ncf57f4512b8743e1bd64374bb5265ae3 rdf:first N0cfd20271e9a4527ac163d69c22ab078
92 rdf:rest Nfa11efbeeed54a18a3e32447d5551ad1
93 Nd35d3290fffd4a8ab2dcd347a707002b rdf:first N0771b47eebd342dfa1feb29c9a9bab5f
94 rdf:rest N44bd4f58026b4e62b86cbc9e07c119a3
95 Nebaf05f51cd14e96b2283f67e295e983 schema:name readcube_id
96 schema:value fe3594e3741c612369de14dea53763c00e9e1a0c620fcdea12dfc01603b854a1
97 rdf:type schema:PropertyValue
98 Nee46b05b61494248851a0fc3f2e8e9cc schema:isbn 978-3-642-35724-4
99 978-3-642-35725-1
100 schema:name Advances in Multimedia Modeling
101 rdf:type schema:Book
102 Nfa11efbeeed54a18a3e32447d5551ad1 rdf:first N1bbb664c87b54bb6b457a0e8c2c12007
103 rdf:rest N4a8c0b4eee244f809ec849e2fdc6e261
104 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
105 schema:name Information and Computing Sciences
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
108 schema:name Information Systems
109 rdf:type schema:DefinedTerm
110 sg:person.01143604600.80 schema:affiliation https://www.grid.ac/institutes/grid.411655.2
111 schema:familyName Liu
112 schema:givenName Chih-Chin
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143604600.80
114 rdf:type schema:Person
115 sg:pub.10.1007/978-3-540-74048-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030350429
116 https://doi.org/10.1007/978-3-540-74048-3
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/bf02603120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022962956
119 https://doi.org/10.1007/bf02603120
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/0022-2836(70)90057-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021169618
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1037/h0027237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052510118
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1073/pnas.86.12.4412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033409872
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1080/09298210802711660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045805139
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1093/bioinformatics/11.2.181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059413478
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1093/nar/22.22.4673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042438223
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1093/oxfordjournals.molbev.a040454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079752303
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/34.761266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156945
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/5.18626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061178979
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/aspaa.2003.1285862 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093484741
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/tac.1974.1100705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061471419
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/tassp.1980.1163491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061518769
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/tmm.2004.840597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061697047
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1121/1.1919362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062283379
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1137/0148063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062840630
150 rdf:type schema:CreativeWork
151 https://www.grid.ac/institutes/grid.411655.2 schema:alternateName Chung Hua University
152 schema:name Department of Bioinformatics, Chung Hua University, Hsin-Chu City, Taiwan
153 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...