Metabolic View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013-03-01

AUTHORS

Giuseppe Guglielmi , Danila Diano , Federico Ponti , Michelangelo Nasuto , Alberto Bazzocchi

ABSTRACT

Metabolic disorders are an important chapter of musculoskeletal pathology of the elderly, and they represent a challenging condition to be managed. Nowadays imaging plays a central role in the management of metabolic musculoskeletal diseases, from the diagnosis to treatment monitoring and to the evaluation of complications. The huge impact of such conditions on health and economy makes imaging tasks very hard. Developments in imaging technologies have recently improved the potential for noninvasive study of bone, fat and muscular anatomy, their quantification, as well as the evaluation of physiology and pathophysiology of musculoskeletal tissues. However, sometimes all these “fascinating” methods can be pursued in a research setting only, due to the vast incidence of diseases like osteoporosis. Among all metabolic bone diseases occurring in the elderly, osteoporosis is the most common and a major cause of disability, morbidity, and mortality. The early diagnosis of osteoporosis is the key point in the prevention of fractures that often become a fatal complication of the disease. Other well-known metabolic musculoskeletal disorders (osteomalacia, Paget disease) are included in this chapter as well as the newest pathological entities, like sarcopenia and related conditions. More... »

PAGES

53-81

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-35579-0_3

DOI

http://dx.doi.org/10.1007/978-3-642-35579-0_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019954402


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Scientific Institute \u201cCasa Sollievo della Sofferenza\u201d Hospital, Viale Cappuccini, 1 San Giovanni Rotondo, 71013, Foggia, Italy", 
          "id": "http://www.grid.ac/institutes/grid.413503.0", 
          "name": [
            "Department of Radiology, University of Foggia, Viale Luigi Pinto 1, 71100, Foggia, Italy", 
            "Department of Radiology, Scientific Institute \u201cCasa Sollievo della Sofferenza\u201d Hospital, Viale Cappuccini, 1 San Giovanni Rotondo, 71013, Foggia, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guglielmi", 
        "givenName": "Giuseppe", 
        "id": "sg:person.01101554723.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101554723.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging Division, Clinical Department of Radiological and Histocytopathological Sciences, University of Bologna, Sant\u2019Orsola \u2013 Malpighi Hospital, Via Massarenti 9, 40138, Bologna, Italy", 
          "id": "http://www.grid.ac/institutes/grid.412311.4", 
          "name": [
            "Imaging Division, Clinical Department of Radiological and Histocytopathological Sciences, University of Bologna, Sant\u2019Orsola \u2013 Malpighi Hospital, Via Massarenti 9, 40138, Bologna, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Diano", 
        "givenName": "Danila", 
        "id": "sg:person.01017401253.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017401253.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging Division, Clinical Department of Radiological and Histocytopathological Sciences, University of Bologna, Sant\u2019Orsola \u2013 Malpighi Hospital, Via Massarenti 9, 40138, Bologna, Italy", 
          "id": "http://www.grid.ac/institutes/grid.412311.4", 
          "name": [
            "Imaging Division, Clinical Department of Radiological and Histocytopathological Sciences, University of Bologna, Sant\u2019Orsola \u2013 Malpighi Hospital, Via Massarenti 9, 40138, Bologna, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ponti", 
        "givenName": "Federico", 
        "id": "sg:person.0677056772.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677056772.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, University of Foggia, Viale Luigi Pinto 1, 71100, Foggia, Italy", 
          "id": "http://www.grid.ac/institutes/grid.10796.39", 
          "name": [
            "Department of Radiology, University of Foggia, Viale Luigi Pinto 1, 71100, Foggia, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nasuto", 
        "givenName": "Michelangelo", 
        "id": "sg:person.01130347170.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130347170.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging Division, Clinical Department of Radiological and Histocytopathological Sciences, University of Bologna, Sant\u2019Orsola \u2013 Malpighi Hospital, Via Massarenti 9, 40138, Bologna, Italy", 
          "id": "http://www.grid.ac/institutes/grid.412311.4", 
          "name": [
            "Imaging Division, Clinical Department of Radiological and Histocytopathological Sciences, University of Bologna, Sant\u2019Orsola \u2013 Malpighi Hospital, Via Massarenti 9, 40138, Bologna, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bazzocchi", 
        "givenName": "Alberto", 
        "id": "sg:person.01236303515.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236303515.94"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2013-03-01", 
    "datePublishedReg": "2013-03-01", 
    "description": "Metabolic disorders are an important chapter of musculoskeletal pathology of the elderly, and they represent a challenging condition to be managed. Nowadays imaging plays a central role in the management of metabolic musculoskeletal diseases, from the diagnosis to treatment monitoring and to the evaluation of complications. The huge impact of such conditions on health and economy makes imaging tasks very hard. Developments in imaging technologies have recently improved the potential for noninvasive study of bone, fat and muscular anatomy, their quantification, as well as the evaluation of physiology and pathophysiology of musculoskeletal tissues. However, sometimes all these \u201cfascinating\u201d methods can be pursued in a research setting only, due to the vast incidence of diseases like osteoporosis. Among all metabolic bone diseases occurring in the elderly, osteoporosis is the most common and a major cause of disability, morbidity, and mortality. The early diagnosis of osteoporosis is the key point in the prevention of fractures that often become a fatal complication of the disease. Other well-known metabolic musculoskeletal disorders (osteomalacia, Paget disease) are included in this chapter as well as the newest pathological entities, like sarcopenia and related conditions.", 
    "editor": [
      {
        "familyName": "Guglielmi", 
        "givenName": "Giuseppe", 
        "type": "Person"
      }, 
      {
        "familyName": "Peh", 
        "givenName": "Wilfred C. G.", 
        "type": "Person"
      }, 
      {
        "familyName": "Guermazi", 
        "givenName": "Ali", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-35579-0_3", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-35578-3", 
        "978-3-642-35579-0"
      ], 
      "name": "Geriatric Imaging", 
      "type": "Book"
    }, 
    "keywords": [
      "evaluation of complications", 
      "metabolic bone disease", 
      "prevention of fractures", 
      "new pathological entity", 
      "fatal complication", 
      "pathological entity", 
      "early diagnosis", 
      "bone disease", 
      "musculoskeletal disorders", 
      "metabolic disorders", 
      "musculoskeletal diseases", 
      "musculoskeletal pathology", 
      "related conditions", 
      "noninvasive studies", 
      "treatment monitoring", 
      "osteoporosis", 
      "major cause", 
      "disease", 
      "complications", 
      "musculoskeletal tissues", 
      "diagnosis", 
      "disorders", 
      "muscular anatomy", 
      "challenging conditions", 
      "morbidity", 
      "sarcopenia", 
      "pathophysiology", 
      "central role", 
      "mortality", 
      "incidence", 
      "pathology", 
      "prevention", 
      "disability", 
      "bone", 
      "evaluation", 
      "cause", 
      "tissue", 
      "anatomy", 
      "health", 
      "fractures", 
      "physiology", 
      "management", 
      "entities", 
      "study", 
      "role", 
      "such conditions", 
      "monitoring", 
      "conditions", 
      "development", 
      "key points", 
      "impact", 
      "huge impact", 
      "potential", 
      "quantification", 
      "research", 
      "chapter", 
      "method", 
      "point", 
      "task", 
      "important chapter", 
      "technology", 
      "economy", 
      "metabolic musculoskeletal diseases", 
      "evaluation of physiology", 
      "vast incidence", 
      "metabolic musculoskeletal disorders"
    ], 
    "name": "Metabolic", 
    "pagination": "53-81", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019954402"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-35579-0_3"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-35579-0_3", 
      "https://app.dimensions.ai/details/publication/pub.1019954402"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_135.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-35579-0_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-35579-0_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-35579-0_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-35579-0_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-35579-0_3'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      23 PREDICATES      90 URIs      83 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-35579-0_3 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author Nd07f70b0f80245e5b25e58a8c774ad36
4 schema:datePublished 2013-03-01
5 schema:datePublishedReg 2013-03-01
6 schema:description Metabolic disorders are an important chapter of musculoskeletal pathology of the elderly, and they represent a challenging condition to be managed. Nowadays imaging plays a central role in the management of metabolic musculoskeletal diseases, from the diagnosis to treatment monitoring and to the evaluation of complications. The huge impact of such conditions on health and economy makes imaging tasks very hard. Developments in imaging technologies have recently improved the potential for noninvasive study of bone, fat and muscular anatomy, their quantification, as well as the evaluation of physiology and pathophysiology of musculoskeletal tissues. However, sometimes all these “fascinating” methods can be pursued in a research setting only, due to the vast incidence of diseases like osteoporosis. Among all metabolic bone diseases occurring in the elderly, osteoporosis is the most common and a major cause of disability, morbidity, and mortality. The early diagnosis of osteoporosis is the key point in the prevention of fractures that often become a fatal complication of the disease. Other well-known metabolic musculoskeletal disorders (osteomalacia, Paget disease) are included in this chapter as well as the newest pathological entities, like sarcopenia and related conditions.
7 schema:editor Nf2787f20f5a24be6ab88753ae28f59e5
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N7d059c824df447229d4b4437ece8a365
12 schema:keywords anatomy
13 bone
14 bone disease
15 cause
16 central role
17 challenging conditions
18 chapter
19 complications
20 conditions
21 development
22 diagnosis
23 disability
24 disease
25 disorders
26 early diagnosis
27 economy
28 entities
29 evaluation
30 evaluation of complications
31 evaluation of physiology
32 fatal complication
33 fractures
34 health
35 huge impact
36 impact
37 important chapter
38 incidence
39 key points
40 major cause
41 management
42 metabolic bone disease
43 metabolic disorders
44 metabolic musculoskeletal diseases
45 metabolic musculoskeletal disorders
46 method
47 monitoring
48 morbidity
49 mortality
50 muscular anatomy
51 musculoskeletal diseases
52 musculoskeletal disorders
53 musculoskeletal pathology
54 musculoskeletal tissues
55 new pathological entity
56 noninvasive studies
57 osteoporosis
58 pathological entity
59 pathology
60 pathophysiology
61 physiology
62 point
63 potential
64 prevention
65 prevention of fractures
66 quantification
67 related conditions
68 research
69 role
70 sarcopenia
71 study
72 such conditions
73 task
74 technology
75 tissue
76 treatment monitoring
77 vast incidence
78 schema:name Metabolic
79 schema:pagination 53-81
80 schema:productId N2a0784819fc446f2886fab1d53726de3
81 N6d55bac5334847b58d73031228c49292
82 schema:publisher Nb11e951229274f888c1f8d1cb3c42714
83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019954402
84 https://doi.org/10.1007/978-3-642-35579-0_3
85 schema:sdDatePublished 2022-01-01T19:08
86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
87 schema:sdPublisher Nc04fb37f352f472c8dcad671b0f86f59
88 schema:url https://doi.org/10.1007/978-3-642-35579-0_3
89 sgo:license sg:explorer/license/
90 sgo:sdDataset chapters
91 rdf:type schema:Chapter
92 N0c0b2a439b6c4932b3b6c1aa24196f66 rdf:first sg:person.01130347170.43
93 rdf:rest Neb6b97b17b9948a9a112eaf36595436b
94 N2a0784819fc446f2886fab1d53726de3 schema:name dimensions_id
95 schema:value pub.1019954402
96 rdf:type schema:PropertyValue
97 N33836a2d62fc4f5683869a83803bc010 rdf:first N493f2c983a424f0aa129ba7596961efd
98 rdf:rest rdf:nil
99 N3c315cb2d2df4a98893123ce2568de0e schema:familyName Peh
100 schema:givenName Wilfred C. G.
101 rdf:type schema:Person
102 N493f2c983a424f0aa129ba7596961efd schema:familyName Guermazi
103 schema:givenName Ali
104 rdf:type schema:Person
105 N6d55bac5334847b58d73031228c49292 schema:name doi
106 schema:value 10.1007/978-3-642-35579-0_3
107 rdf:type schema:PropertyValue
108 N7d059c824df447229d4b4437ece8a365 schema:isbn 978-3-642-35578-3
109 978-3-642-35579-0
110 schema:name Geriatric Imaging
111 rdf:type schema:Book
112 N897a99b135b04d089ab58596c2298da2 rdf:first N3c315cb2d2df4a98893123ce2568de0e
113 rdf:rest N33836a2d62fc4f5683869a83803bc010
114 N98706d5b7cd54d468888a5cb41a3a698 rdf:first sg:person.0677056772.79
115 rdf:rest N0c0b2a439b6c4932b3b6c1aa24196f66
116 Nb11e951229274f888c1f8d1cb3c42714 schema:name Springer Nature
117 rdf:type schema:Organisation
118 Nc04fb37f352f472c8dcad671b0f86f59 schema:name Springer Nature - SN SciGraph project
119 rdf:type schema:Organization
120 Nd07f70b0f80245e5b25e58a8c774ad36 rdf:first sg:person.01101554723.35
121 rdf:rest Nd7407c724da94572be492f8255d009ae
122 Nd7407c724da94572be492f8255d009ae rdf:first sg:person.01017401253.25
123 rdf:rest N98706d5b7cd54d468888a5cb41a3a698
124 Neb6b97b17b9948a9a112eaf36595436b rdf:first sg:person.01236303515.94
125 rdf:rest rdf:nil
126 Nf2787f20f5a24be6ab88753ae28f59e5 rdf:first Nf91011bb800e422fa12167b81dc3020a
127 rdf:rest N897a99b135b04d089ab58596c2298da2
128 Nf91011bb800e422fa12167b81dc3020a schema:familyName Guglielmi
129 schema:givenName Giuseppe
130 rdf:type schema:Person
131 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
132 schema:name Medical and Health Sciences
133 rdf:type schema:DefinedTerm
134 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
135 schema:name Clinical Sciences
136 rdf:type schema:DefinedTerm
137 sg:person.01017401253.25 schema:affiliation grid-institutes:grid.412311.4
138 schema:familyName Diano
139 schema:givenName Danila
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017401253.25
141 rdf:type schema:Person
142 sg:person.01101554723.35 schema:affiliation grid-institutes:grid.413503.0
143 schema:familyName Guglielmi
144 schema:givenName Giuseppe
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101554723.35
146 rdf:type schema:Person
147 sg:person.01130347170.43 schema:affiliation grid-institutes:grid.10796.39
148 schema:familyName Nasuto
149 schema:givenName Michelangelo
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130347170.43
151 rdf:type schema:Person
152 sg:person.01236303515.94 schema:affiliation grid-institutes:grid.412311.4
153 schema:familyName Bazzocchi
154 schema:givenName Alberto
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236303515.94
156 rdf:type schema:Person
157 sg:person.0677056772.79 schema:affiliation grid-institutes:grid.412311.4
158 schema:familyName Ponti
159 schema:givenName Federico
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677056772.79
161 rdf:type schema:Person
162 grid-institutes:grid.10796.39 schema:alternateName Department of Radiology, University of Foggia, Viale Luigi Pinto 1, 71100, Foggia, Italy
163 schema:name Department of Radiology, University of Foggia, Viale Luigi Pinto 1, 71100, Foggia, Italy
164 rdf:type schema:Organization
165 grid-institutes:grid.412311.4 schema:alternateName Imaging Division, Clinical Department of Radiological and Histocytopathological Sciences, University of Bologna, Sant’Orsola – Malpighi Hospital, Via Massarenti 9, 40138, Bologna, Italy
166 schema:name Imaging Division, Clinical Department of Radiological and Histocytopathological Sciences, University of Bologna, Sant’Orsola – Malpighi Hospital, Via Massarenti 9, 40138, Bologna, Italy
167 rdf:type schema:Organization
168 grid-institutes:grid.413503.0 schema:alternateName Department of Radiology, Scientific Institute “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini, 1 San Giovanni Rotondo, 71013, Foggia, Italy
169 schema:name Department of Radiology, Scientific Institute “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini, 1 San Giovanni Rotondo, 71013, Foggia, Italy
170 Department of Radiology, University of Foggia, Viale Luigi Pinto 1, 71100, Foggia, Italy
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...