Ontology type: schema:Chapter
2012
AUTHORSChing-Chen Kuo , Hsueh-I Lu
ABSTRACTLet G be an n-node graph with maximum degree Δ. The Glauber dynamics for G, defined by Jerrum, is a Markov chain over the k-colorings of G. Many classes of G on which the Glauber dynamics mixes rapidly have been identified. Recent research efforts focus on the important case that Δ ≥ dlog2n holds for some sufficiently large constant d. We add the following new results along this direction, where ε can be any constant with 0 < ε < 1. Let α ≈ 1.645 be the root of (1 − e− 1/x)2 + 2xe− 1/x = 2. If G is regular and bipartite and k ≥ (α + ε)Δ, then the mixing time of the Glauber dynamics for G is O(nlogn).Let β ≈ 1.763 be the root of x = e1/x. If the number of common neighbors for any two adjacent nodes of G is at most \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{\epsilon^{1.5}\Delta}{360e}$\end{document} and k ≥ (1 + ε)βΔ, then the mixing time of the Glauber dynamics is O(nlogn). More... »
PAGES24-33
Algorithms and Computation
ISBN
978-3-642-35260-7
978-3-642-35261-4
http://scigraph.springernature.com/pub.10.1007/978-3-642-35261-4_6
DOIhttp://dx.doi.org/10.1007/978-3-642-35261-4_6
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1040969283
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan",
"id": "http://www.grid.ac/institutes/grid.19188.39",
"name": [
"Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan"
],
"type": "Organization"
},
"familyName": "Kuo",
"givenName": "Ching-Chen",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan",
"id": "http://www.grid.ac/institutes/grid.19188.39",
"name": [
"Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan"
],
"type": "Organization"
},
"familyName": "Lu",
"givenName": "Hsueh-I",
"id": "sg:person.013345515575.46",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013345515575.46"
],
"type": "Person"
}
],
"datePublished": "2012",
"datePublishedReg": "2012-01-01",
"description": "Let G be an n-node graph with maximum degree \u0394. The Glauber dynamics for G, defined by Jerrum, is a Markov chain over the k-colorings of G. Many classes of G on which the Glauber dynamics mixes rapidly have been identified. Recent research efforts focus on the important case that \u0394\u2009\u2265\u2009dlog2n holds for some sufficiently large constant d. We add the following new results along this direction, where \u03b5 can be any constant with 0\u2009<\u2009\u03b5\u2009<\u20091. \nLet \u03b1\u2009\u2248\u20091.645 be the root of (1\u2009\u2212\u2009e\u2212\u20091/x)2\u2009+\u20092xe\u2212\u20091/x\u2009=\u20092. If G is regular and bipartite and k\u2009\u2265\u2009(\u03b1\u2009+\u2009\u03b5)\u0394, then the mixing time of the Glauber dynamics for G is O(nlogn).Let \u03b2\u2009\u2248\u20091.763 be the root of x\u2009=\u2009e1/x. If the number of common neighbors for any two adjacent nodes of G is at most \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\frac{\\epsilon^{1.5}\\Delta}{360e}$\\end{document} and k\u2009\u2265\u2009(1\u2009+\u2009\u03b5)\u03b2\u0394, then the mixing time of the Glauber dynamics is O(nlogn).",
"editor": [
{
"familyName": "Chao",
"givenName": "Kun-Mao",
"type": "Person"
},
{
"familyName": "Hsu",
"givenName": "Tsan-sheng",
"type": "Person"
},
{
"familyName": "Lee",
"givenName": "Der-Tsai",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-35261-4_6",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-642-35260-7",
"978-3-642-35261-4"
],
"name": "Algorithms and Computation",
"type": "Book"
},
"keywords": [
"Glauber dynamics",
"maximum degree \u0394.",
"degree \u0394.",
"Markov chain",
"important case",
"new results",
"common neighbors",
"regular bipartite graphs",
"bipartite graphs",
"node graph",
"graph",
"dynamics",
"Jerrum",
"coloring",
"adjacent nodes",
"class",
"dynamic mix",
"recent research efforts",
"research efforts",
"direction",
"time",
"number",
"neighbors",
"nodes",
"chain",
"mix",
"efforts",
"cases",
"results",
"roots"
],
"name": "Randomly Coloring Regular Bipartite Graphs and Graphs with Bounded Common Neighbors",
"pagination": "24-33",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1040969283"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-35261-4_6"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-35261-4_6",
"https://app.dimensions.ai/details/publication/pub.1040969283"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-10T10:47",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_336.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-642-35261-4_6"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-35261-4_6'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-35261-4_6'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-35261-4_6'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-35261-4_6'
This table displays all metadata directly associated to this object as RDF triples.
106 TRIPLES
23 PREDICATES
56 URIs
49 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-642-35261-4_6 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0101 |
3 | ″ | schema:author | N31d9d61a7a9648a5bd3c2950279475e7 |
4 | ″ | schema:datePublished | 2012 |
5 | ″ | schema:datePublishedReg | 2012-01-01 |
6 | ″ | schema:description | Let G be an n-node graph with maximum degree Δ. The Glauber dynamics for G, defined by Jerrum, is a Markov chain over the k-colorings of G. Many classes of G on which the Glauber dynamics mixes rapidly have been identified. Recent research efforts focus on the important case that Δ ≥ dlog2n holds for some sufficiently large constant d. We add the following new results along this direction, where ε can be any constant with 0 < ε < 1. Let α ≈ 1.645 be the root of (1 − e− 1/x)2 + 2xe− 1/x = 2. If G is regular and bipartite and k ≥ (α + ε)Δ, then the mixing time of the Glauber dynamics for G is O(nlogn).Let β ≈ 1.763 be the root of x = e1/x. If the number of common neighbors for any two adjacent nodes of G is at most \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{\epsilon^{1.5}\Delta}{360e}$\end{document} and k ≥ (1 + ε)βΔ, then the mixing time of the Glauber dynamics is O(nlogn). |
7 | ″ | schema:editor | N68793c181b1143c0be2d99dbd62f8a15 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N0e75da5101a84470805837795c9dbf87 |
12 | ″ | schema:keywords | Glauber dynamics |
13 | ″ | ″ | Jerrum |
14 | ″ | ″ | Markov chain |
15 | ″ | ″ | adjacent nodes |
16 | ″ | ″ | bipartite graphs |
17 | ″ | ″ | cases |
18 | ″ | ″ | chain |
19 | ″ | ″ | class |
20 | ″ | ″ | coloring |
21 | ″ | ″ | common neighbors |
22 | ″ | ″ | degree Δ. |
23 | ″ | ″ | direction |
24 | ″ | ″ | dynamic mix |
25 | ″ | ″ | dynamics |
26 | ″ | ″ | efforts |
27 | ″ | ″ | graph |
28 | ″ | ″ | important case |
29 | ″ | ″ | maximum degree Δ. |
30 | ″ | ″ | mix |
31 | ″ | ″ | neighbors |
32 | ″ | ″ | new results |
33 | ″ | ″ | node graph |
34 | ″ | ″ | nodes |
35 | ″ | ″ | number |
36 | ″ | ″ | recent research efforts |
37 | ″ | ″ | regular bipartite graphs |
38 | ″ | ″ | research efforts |
39 | ″ | ″ | results |
40 | ″ | ″ | roots |
41 | ″ | ″ | time |
42 | ″ | schema:name | Randomly Coloring Regular Bipartite Graphs and Graphs with Bounded Common Neighbors |
43 | ″ | schema:pagination | 24-33 |
44 | ″ | schema:productId | N310fe3324ca446258379f8f56ff08ce3 |
45 | ″ | ″ | Nb3f374e57d94479d9ad8c616c9e0e392 |
46 | ″ | schema:publisher | Ncc73f30a8d4b4186b73f32b05b4ced49 |
47 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1040969283 |
48 | ″ | ″ | https://doi.org/10.1007/978-3-642-35261-4_6 |
49 | ″ | schema:sdDatePublished | 2022-05-10T10:47 |
50 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
51 | ″ | schema:sdPublisher | Nf7bffa162937410e90ef0450dc6500ad |
52 | ″ | schema:url | https://doi.org/10.1007/978-3-642-35261-4_6 |
53 | ″ | sgo:license | sg:explorer/license/ |
54 | ″ | sgo:sdDataset | chapters |
55 | ″ | rdf:type | schema:Chapter |
56 | N0e75da5101a84470805837795c9dbf87 | schema:isbn | 978-3-642-35260-7 |
57 | ″ | ″ | 978-3-642-35261-4 |
58 | ″ | schema:name | Algorithms and Computation |
59 | ″ | rdf:type | schema:Book |
60 | N27499ff98bd14e789f37753f2d1f7020 | schema:familyName | Lee |
61 | ″ | schema:givenName | Der-Tsai |
62 | ″ | rdf:type | schema:Person |
63 | N310fe3324ca446258379f8f56ff08ce3 | schema:name | doi |
64 | ″ | schema:value | 10.1007/978-3-642-35261-4_6 |
65 | ″ | rdf:type | schema:PropertyValue |
66 | N31d9d61a7a9648a5bd3c2950279475e7 | rdf:first | Nd7f2632d17324bc082a1d0ad02d3fa8e |
67 | ″ | rdf:rest | Ne1310592e95543b780d4ee90dc204dc4 |
68 | N4142821df67740d2a9a01d0b9215894d | rdf:first | N27499ff98bd14e789f37753f2d1f7020 |
69 | ″ | rdf:rest | rdf:nil |
70 | N68793c181b1143c0be2d99dbd62f8a15 | rdf:first | Nd3434405bc644804a1f6948266007f6f |
71 | ″ | rdf:rest | N6d45abd3fed1493bac04c4e7b5427f42 |
72 | N6d45abd3fed1493bac04c4e7b5427f42 | rdf:first | N8e269d8d451644f8a8d8973aed94f094 |
73 | ″ | rdf:rest | N4142821df67740d2a9a01d0b9215894d |
74 | N8e269d8d451644f8a8d8973aed94f094 | schema:familyName | Hsu |
75 | ″ | schema:givenName | Tsan-sheng |
76 | ″ | rdf:type | schema:Person |
77 | Nb3f374e57d94479d9ad8c616c9e0e392 | schema:name | dimensions_id |
78 | ″ | schema:value | pub.1040969283 |
79 | ″ | rdf:type | schema:PropertyValue |
80 | Ncc73f30a8d4b4186b73f32b05b4ced49 | schema:name | Springer Nature |
81 | ″ | rdf:type | schema:Organisation |
82 | Nd3434405bc644804a1f6948266007f6f | schema:familyName | Chao |
83 | ″ | schema:givenName | Kun-Mao |
84 | ″ | rdf:type | schema:Person |
85 | Nd7f2632d17324bc082a1d0ad02d3fa8e | schema:affiliation | grid-institutes:grid.19188.39 |
86 | ″ | schema:familyName | Kuo |
87 | ″ | schema:givenName | Ching-Chen |
88 | ″ | rdf:type | schema:Person |
89 | Ne1310592e95543b780d4ee90dc204dc4 | rdf:first | sg:person.013345515575.46 |
90 | ″ | rdf:rest | rdf:nil |
91 | Nf7bffa162937410e90ef0450dc6500ad | schema:name | Springer Nature - SN SciGraph project |
92 | ″ | rdf:type | schema:Organization |
93 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
94 | ″ | schema:name | Mathematical Sciences |
95 | ″ | rdf:type | schema:DefinedTerm |
96 | anzsrc-for:0101 | schema:inDefinedTermSet | anzsrc-for: |
97 | ″ | schema:name | Pure Mathematics |
98 | ″ | rdf:type | schema:DefinedTerm |
99 | sg:person.013345515575.46 | schema:affiliation | grid-institutes:grid.19188.39 |
100 | ″ | schema:familyName | Lu |
101 | ″ | schema:givenName | Hsueh-I |
102 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013345515575.46 |
103 | ″ | rdf:type | schema:Person |
104 | grid-institutes:grid.19188.39 | schema:alternateName | Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan |
105 | ″ | schema:name | Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan |
106 | ″ | rdf:type | schema:Organization |