Ontology type: schema:Chapter Open Access: True
2012
AUTHORSNadeschda Nikitina , Birte Glimm
ABSTRACTThree conflicting requirements arise in the context of knowledge base (KB) extraction: the size of the extracted KB, the size of the corresponding signature and the syntactic similarity of the extracted KB with the original one. Minimal module extraction and uniform interpolation assign an absolute priority to one of these requirements, thereby limiting the possibilities to influence the other two. We propose a novel technique for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal EL}$\end{document} that does not require such an extreme prioritization. We propose a tractable rewriting approach and empirically compare the technique with existing approaches with encouraging results. More... »
PAGES394-409
The Semantic Web – ISWC 2012
ISBN
978-3-642-35175-4
978-3-642-35176-1
http://scigraph.springernature.com/pub.10.1007/978-3-642-35176-1_25
DOIhttp://dx.doi.org/10.1007/978-3-642-35176-1_25
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1006022160
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute AIFB, Karlsruhe Institute of Technology, Germany",
"id": "http://www.grid.ac/institutes/grid.7892.4",
"name": [
"Institute AIFB, Karlsruhe Institute of Technology, Germany"
],
"type": "Organization"
},
"familyName": "Nikitina",
"givenName": "Nadeschda",
"id": "sg:person.016360107370.05",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016360107370.05"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Artificial Intelligence, University of Ulm, Germany",
"id": "http://www.grid.ac/institutes/grid.6582.9",
"name": [
"Institute of Artificial Intelligence, University of Ulm, Germany"
],
"type": "Organization"
},
"familyName": "Glimm",
"givenName": "Birte",
"id": "sg:person.015234565343.35",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015234565343.35"
],
"type": "Person"
}
],
"datePublished": "2012",
"datePublishedReg": "2012-01-01",
"description": "Three conflicting requirements arise in the context of knowledge base (KB) extraction: the size of the extracted KB, the size of the corresponding signature and the syntactic similarity of the extracted KB with the original one. Minimal module extraction and uniform interpolation assign an absolute priority to one of these requirements, thereby limiting the possibilities to influence the other two. We propose a novel technique for \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}${\\mathcal EL}$\\end{document} that does not require such an extreme prioritization. We propose a tractable rewriting approach and empirically compare the technique with existing approaches with encouraging results.",
"editor": [
{
"familyName": "Cudr\u00e9-Mauroux",
"givenName": "Philippe",
"type": "Person"
},
{
"familyName": "Heflin",
"givenName": "Jeff",
"type": "Person"
},
{
"familyName": "Sirin",
"givenName": "Evren",
"type": "Person"
},
{
"familyName": "Tudorache",
"givenName": "Tania",
"type": "Person"
},
{
"familyName": "Euzenat",
"givenName": "J\u00e9r\u00f4me",
"type": "Person"
},
{
"familyName": "Hauswirth",
"givenName": "Manfred",
"type": "Person"
},
{
"familyName": "Parreira",
"givenName": "Josiane Xavier",
"type": "Person"
},
{
"familyName": "Hendler",
"givenName": "Jim",
"type": "Person"
},
{
"familyName": "Schreiber",
"givenName": "Guus",
"type": "Person"
},
{
"familyName": "Bernstein",
"givenName": "Abraham",
"type": "Person"
},
{
"familyName": "Blomqvist",
"givenName": "Eva",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-35176-1_25",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-642-35175-4",
"978-3-642-35176-1"
],
"name": "The Semantic Web \u2013 ISWC 2012",
"type": "Book"
},
"keywords": [
"conflicting requirements",
"novel technique",
"knowledge-based extraction",
"extraction",
"requirements",
"technique",
"size",
"base extraction",
"corresponding signatures",
"module extraction",
"interpolation",
"sweetspot",
"approach",
"encouraging results",
"results",
"possibility",
"basis",
"absolute priority",
"signatures",
"priority",
"prioritization",
"context",
"similarity",
"knowledge bases",
"kb",
"rewriting",
"syntactic similarity"
],
"name": "Hitting the Sweetspot: Economic Rewriting of Knowledge Bases",
"pagination": "394-409",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1006022160"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-35176-1_25"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-35176-1_25",
"https://app.dimensions.ai/details/publication/pub.1006022160"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-06-01T22:37",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_8.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-642-35176-1_25"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-35176-1_25'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-35176-1_25'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-35176-1_25'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-35176-1_25'
This table displays all metadata directly associated to this object as RDF triples.
147 TRIPLES
23 PREDICATES
53 URIs
46 LITERALS
7 BLANK NODES