A Possibilistic Density Based Clustering for Discovering Clusters of Arbitrary Shapes and Densities in High Dimensional Data View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2012

AUTHORS

Noha A. Yousri , Mohamed S. Kamel , Mohamed A. Ismail

ABSTRACT

Apart from the interesting problem of finding arbitrary shaped clusters of different densities, some applications further introduce the challenge of finding overlapping clusters in the presence of outliers. Fuzzy and possibilistic clustering approaches have therefore been developed to handle such problem, where possibilistic clustering is able to handle the presence of outliers compared to its fuzzy counterpart. However, current known fuzzy and possibilistic algorithms are still inefficient to use for finding the natural cluster structure. In this work, a novel possibilistic density based clustering approach is introduced, to identify the degrees of typicality of patterns to clusters of arbitrary shapes and densities. Experimental results illustrate the efficiency of the proposed approach compared to related algorithms. More... »

PAGES

577-584

Book

TITLE

Neural Information Processing

ISBN

978-3-642-34486-2
978-3-642-34487-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-34487-9_70

DOI

http://dx.doi.org/10.1007/978-3-642-34487-9_70

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038160393


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Alexandria University", 
          "id": "https://www.grid.ac/institutes/grid.7155.6", 
          "name": [
            "Computer and System Engineering, Faculty of Engineering, Alexandria University, Egypt"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yousri", 
        "givenName": "Noha A.", 
        "id": "sg:person.01100527515.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100527515.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "PAMI, University of Waterloo, Waterloo, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kamel", 
        "givenName": "Mohamed S.", 
        "id": "sg:person.01133760566.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133760566.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Alexandria University", 
          "id": "https://www.grid.ac/institutes/grid.7155.6", 
          "name": [
            "Computer and System Engineering, Faculty of Engineering, Alexandria University, Egypt"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ismail", 
        "givenName": "Mohamed A.", 
        "id": "sg:person.015216606035.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015216606035.39"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2105-8-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009905742", 
          "https://doi.org/10.1186/1471-2105-8-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-0450-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011935162", 
          "https://doi.org/10.1007/978-1-4757-0450-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-0450-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011935162", 
          "https://doi.org/10.1007/978-1-4757-0450-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/2.781637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061106156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/91.227387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061247668"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "Apart from the interesting problem of finding arbitrary shaped clusters of different densities, some applications further introduce the challenge of finding overlapping clusters in the presence of outliers. Fuzzy and possibilistic clustering approaches have therefore been developed to handle such problem, where possibilistic clustering is able to handle the presence of outliers compared to its fuzzy counterpart. However, current known fuzzy and possibilistic algorithms are still inefficient to use for finding the natural cluster structure. In this work, a novel possibilistic density based clustering approach is introduced, to identify the degrees of typicality of patterns to clusters of arbitrary shapes and densities. Experimental results illustrate the efficiency of the proposed approach compared to related algorithms.", 
    "editor": [
      {
        "familyName": "Huang", 
        "givenName": "Tingwen", 
        "type": "Person"
      }, 
      {
        "familyName": "Zeng", 
        "givenName": "Zhigang", 
        "type": "Person"
      }, 
      {
        "familyName": "Li", 
        "givenName": "Chuandong", 
        "type": "Person"
      }, 
      {
        "familyName": "Leung", 
        "givenName": "Chi Sing", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-34487-9_70", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-34486-2", 
        "978-3-642-34487-9"
      ], 
      "name": "Neural Information Processing", 
      "type": "Book"
    }, 
    "name": "A Possibilistic Density Based Clustering for Discovering Clusters of Arbitrary Shapes and Densities in High Dimensional Data", 
    "pagination": "577-584", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-34487-9_70"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b5c8fbebb392a6081a8cfe4287d716373ba8e8aafb98682a723c68637401fd0e"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038160393"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-34487-9_70", 
      "https://app.dimensions.ai/details/publication/pub.1038160393"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T19:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000267.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-34487-9_70"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-34487-9_70'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-34487-9_70'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-34487-9_70'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-34487-9_70'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      23 PREDICATES      31 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-34487-9_70 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N8c3e0d3461bc49b48993e8583e6b6c02
4 schema:citation sg:pub.10.1007/978-1-4757-0450-1
5 sg:pub.10.1186/1471-2105-8-3
6 https://doi.org/10.1109/2.781637
7 https://doi.org/10.1109/91.227387
8 schema:datePublished 2012
9 schema:datePublishedReg 2012-01-01
10 schema:description Apart from the interesting problem of finding arbitrary shaped clusters of different densities, some applications further introduce the challenge of finding overlapping clusters in the presence of outliers. Fuzzy and possibilistic clustering approaches have therefore been developed to handle such problem, where possibilistic clustering is able to handle the presence of outliers compared to its fuzzy counterpart. However, current known fuzzy and possibilistic algorithms are still inefficient to use for finding the natural cluster structure. In this work, a novel possibilistic density based clustering approach is introduced, to identify the degrees of typicality of patterns to clusters of arbitrary shapes and densities. Experimental results illustrate the efficiency of the proposed approach compared to related algorithms.
11 schema:editor N71164f250be442ae8938c57d7117493e
12 schema:genre chapter
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N4fa73ca7b4a2476481fad49ce3bd2971
16 schema:name A Possibilistic Density Based Clustering for Discovering Clusters of Arbitrary Shapes and Densities in High Dimensional Data
17 schema:pagination 577-584
18 schema:productId N2b13a1dc27d44a0aba1b064491530993
19 N82b213e2af6a495784fa2b00b32502e7
20 N91c9348fe3e34313b703ee025227f9d9
21 schema:publisher N2b4e2ccfdda44cc7be320e9197ee553d
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038160393
23 https://doi.org/10.1007/978-3-642-34487-9_70
24 schema:sdDatePublished 2019-04-15T19:11
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher Na951719141334bc3ae67c8fceddf0087
27 schema:url http://link.springer.com/10.1007/978-3-642-34487-9_70
28 sgo:license sg:explorer/license/
29 sgo:sdDataset chapters
30 rdf:type schema:Chapter
31 N08de2033f85748c59d06b90cb70045c6 rdf:first N8fbb5ae4a5b843109a5141ae78efc200
32 rdf:rest rdf:nil
33 N101f729141ee4c8281a09db64ec85e43 schema:familyName Zeng
34 schema:givenName Zhigang
35 rdf:type schema:Person
36 N2958b8775e9141b393ff0fb1ecf16463 rdf:first N42a000aab6184b1d835247b68aa7c096
37 rdf:rest N08de2033f85748c59d06b90cb70045c6
38 N2b13a1dc27d44a0aba1b064491530993 schema:name readcube_id
39 schema:value b5c8fbebb392a6081a8cfe4287d716373ba8e8aafb98682a723c68637401fd0e
40 rdf:type schema:PropertyValue
41 N2b4e2ccfdda44cc7be320e9197ee553d schema:location Berlin, Heidelberg
42 schema:name Springer Berlin Heidelberg
43 rdf:type schema:Organisation
44 N42a000aab6184b1d835247b68aa7c096 schema:familyName Li
45 schema:givenName Chuandong
46 rdf:type schema:Person
47 N4c597043614643c6946f0bbd4cd84443 rdf:first sg:person.015216606035.39
48 rdf:rest rdf:nil
49 N4fa73ca7b4a2476481fad49ce3bd2971 schema:isbn 978-3-642-34486-2
50 978-3-642-34487-9
51 schema:name Neural Information Processing
52 rdf:type schema:Book
53 N546bab3ca8e24ed9abef6f9335f9e3e0 rdf:first sg:person.01133760566.26
54 rdf:rest N4c597043614643c6946f0bbd4cd84443
55 N666b0416d3c04eab9204af881a193879 schema:familyName Huang
56 schema:givenName Tingwen
57 rdf:type schema:Person
58 N71164f250be442ae8938c57d7117493e rdf:first N666b0416d3c04eab9204af881a193879
59 rdf:rest Nb3f176b873e94397bf5e1f17c20d439a
60 N82b213e2af6a495784fa2b00b32502e7 schema:name dimensions_id
61 schema:value pub.1038160393
62 rdf:type schema:PropertyValue
63 N8c3e0d3461bc49b48993e8583e6b6c02 rdf:first sg:person.01100527515.43
64 rdf:rest N546bab3ca8e24ed9abef6f9335f9e3e0
65 N8fbb5ae4a5b843109a5141ae78efc200 schema:familyName Leung
66 schema:givenName Chi Sing
67 rdf:type schema:Person
68 N91c9348fe3e34313b703ee025227f9d9 schema:name doi
69 schema:value 10.1007/978-3-642-34487-9_70
70 rdf:type schema:PropertyValue
71 Na951719141334bc3ae67c8fceddf0087 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 Nb3f176b873e94397bf5e1f17c20d439a rdf:first N101f729141ee4c8281a09db64ec85e43
74 rdf:rest N2958b8775e9141b393ff0fb1ecf16463
75 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
76 schema:name Information and Computing Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
79 schema:name Artificial Intelligence and Image Processing
80 rdf:type schema:DefinedTerm
81 sg:person.01100527515.43 schema:affiliation https://www.grid.ac/institutes/grid.7155.6
82 schema:familyName Yousri
83 schema:givenName Noha A.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100527515.43
85 rdf:type schema:Person
86 sg:person.01133760566.26 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
87 schema:familyName Kamel
88 schema:givenName Mohamed S.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133760566.26
90 rdf:type schema:Person
91 sg:person.015216606035.39 schema:affiliation https://www.grid.ac/institutes/grid.7155.6
92 schema:familyName Ismail
93 schema:givenName Mohamed A.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015216606035.39
95 rdf:type schema:Person
96 sg:pub.10.1007/978-1-4757-0450-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011935162
97 https://doi.org/10.1007/978-1-4757-0450-1
98 rdf:type schema:CreativeWork
99 sg:pub.10.1186/1471-2105-8-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009905742
100 https://doi.org/10.1186/1471-2105-8-3
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1109/2.781637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061106156
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1109/91.227387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061247668
105 rdf:type schema:CreativeWork
106 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
107 schema:name PAMI, University of Waterloo, Waterloo, Ontario, Canada
108 rdf:type schema:Organization
109 https://www.grid.ac/institutes/grid.7155.6 schema:alternateName Alexandria University
110 schema:name Computer and System Engineering, Faculty of Engineering, Alexandria University, Egypt
111 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...