A Possibilistic Density Based Clustering for Discovering Clusters of Arbitrary Shapes and Densities in High Dimensional Data View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2012

AUTHORS

Noha A. Yousri , Mohamed S. Kamel , Mohamed A. Ismail

ABSTRACT

Apart from the interesting problem of finding arbitrary shaped clusters of different densities, some applications further introduce the challenge of finding overlapping clusters in the presence of outliers. Fuzzy and possibilistic clustering approaches have therefore been developed to handle such problem, where possibilistic clustering is able to handle the presence of outliers compared to its fuzzy counterpart. However, current known fuzzy and possibilistic algorithms are still inefficient to use for finding the natural cluster structure. In this work, a novel possibilistic density based clustering approach is introduced, to identify the degrees of typicality of patterns to clusters of arbitrary shapes and densities. Experimental results illustrate the efficiency of the proposed approach compared to related algorithms. More... »

PAGES

577-584

Book

TITLE

Neural Information Processing

ISBN

978-3-642-34486-2
978-3-642-34487-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-34487-9_70

DOI

http://dx.doi.org/10.1007/978-3-642-34487-9_70

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038160393


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Alexandria University", 
          "id": "https://www.grid.ac/institutes/grid.7155.6", 
          "name": [
            "Computer and System Engineering, Faculty of Engineering, Alexandria University, Egypt"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yousri", 
        "givenName": "Noha A.", 
        "id": "sg:person.01100527515.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100527515.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "PAMI, University of Waterloo, Waterloo, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kamel", 
        "givenName": "Mohamed S.", 
        "id": "sg:person.01133760566.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133760566.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Alexandria University", 
          "id": "https://www.grid.ac/institutes/grid.7155.6", 
          "name": [
            "Computer and System Engineering, Faculty of Engineering, Alexandria University, Egypt"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ismail", 
        "givenName": "Mohamed A.", 
        "id": "sg:person.015216606035.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015216606035.39"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2105-8-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009905742", 
          "https://doi.org/10.1186/1471-2105-8-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-0450-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011935162", 
          "https://doi.org/10.1007/978-1-4757-0450-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-0450-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011935162", 
          "https://doi.org/10.1007/978-1-4757-0450-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/2.781637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061106156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/91.227387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061247668"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "Apart from the interesting problem of finding arbitrary shaped clusters of different densities, some applications further introduce the challenge of finding overlapping clusters in the presence of outliers. Fuzzy and possibilistic clustering approaches have therefore been developed to handle such problem, where possibilistic clustering is able to handle the presence of outliers compared to its fuzzy counterpart. However, current known fuzzy and possibilistic algorithms are still inefficient to use for finding the natural cluster structure. In this work, a novel possibilistic density based clustering approach is introduced, to identify the degrees of typicality of patterns to clusters of arbitrary shapes and densities. Experimental results illustrate the efficiency of the proposed approach compared to related algorithms.", 
    "editor": [
      {
        "familyName": "Huang", 
        "givenName": "Tingwen", 
        "type": "Person"
      }, 
      {
        "familyName": "Zeng", 
        "givenName": "Zhigang", 
        "type": "Person"
      }, 
      {
        "familyName": "Li", 
        "givenName": "Chuandong", 
        "type": "Person"
      }, 
      {
        "familyName": "Leung", 
        "givenName": "Chi Sing", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-34487-9_70", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-34486-2", 
        "978-3-642-34487-9"
      ], 
      "name": "Neural Information Processing", 
      "type": "Book"
    }, 
    "name": "A Possibilistic Density Based Clustering for Discovering Clusters of Arbitrary Shapes and Densities in High Dimensional Data", 
    "pagination": "577-584", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-34487-9_70"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b5c8fbebb392a6081a8cfe4287d716373ba8e8aafb98682a723c68637401fd0e"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038160393"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-34487-9_70", 
      "https://app.dimensions.ai/details/publication/pub.1038160393"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T19:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000267.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-34487-9_70"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-34487-9_70'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-34487-9_70'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-34487-9_70'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-34487-9_70'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      23 PREDICATES      31 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-34487-9_70 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N600177c2c3754337b94e0c61cbca07bf
4 schema:citation sg:pub.10.1007/978-1-4757-0450-1
5 sg:pub.10.1186/1471-2105-8-3
6 https://doi.org/10.1109/2.781637
7 https://doi.org/10.1109/91.227387
8 schema:datePublished 2012
9 schema:datePublishedReg 2012-01-01
10 schema:description Apart from the interesting problem of finding arbitrary shaped clusters of different densities, some applications further introduce the challenge of finding overlapping clusters in the presence of outliers. Fuzzy and possibilistic clustering approaches have therefore been developed to handle such problem, where possibilistic clustering is able to handle the presence of outliers compared to its fuzzy counterpart. However, current known fuzzy and possibilistic algorithms are still inefficient to use for finding the natural cluster structure. In this work, a novel possibilistic density based clustering approach is introduced, to identify the degrees of typicality of patterns to clusters of arbitrary shapes and densities. Experimental results illustrate the efficiency of the proposed approach compared to related algorithms.
11 schema:editor N9226276ba9704b2e90403ebeeb61ee03
12 schema:genre chapter
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N17c1b6d98b914fcb94d47105d70449ec
16 schema:name A Possibilistic Density Based Clustering for Discovering Clusters of Arbitrary Shapes and Densities in High Dimensional Data
17 schema:pagination 577-584
18 schema:productId N7af5390bfaea43af9436ad328ee19654
19 N963bc48b3065434c84b101570c3f5b22
20 Ncfcd205446254dfa91776a83df72d7a4
21 schema:publisher N68c9c6546dc64960909f5852f9302947
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038160393
23 https://doi.org/10.1007/978-3-642-34487-9_70
24 schema:sdDatePublished 2019-04-15T19:11
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher N6058429d6dfd4a9cb6578bc0b871ac51
27 schema:url http://link.springer.com/10.1007/978-3-642-34487-9_70
28 sgo:license sg:explorer/license/
29 sgo:sdDataset chapters
30 rdf:type schema:Chapter
31 N17c1b6d98b914fcb94d47105d70449ec schema:isbn 978-3-642-34486-2
32 978-3-642-34487-9
33 schema:name Neural Information Processing
34 rdf:type schema:Book
35 N239b7b88cd8e4dc293a781eb2fbb9e49 rdf:first sg:person.015216606035.39
36 rdf:rest rdf:nil
37 N344d68792ae3433db826448f0e2d32a4 schema:familyName Zeng
38 schema:givenName Zhigang
39 rdf:type schema:Person
40 N375705baab5a4c42814e959b922d2f49 rdf:first sg:person.01133760566.26
41 rdf:rest N239b7b88cd8e4dc293a781eb2fbb9e49
42 N46e9f26a056241bf837d4a999ba40acc schema:familyName Huang
43 schema:givenName Tingwen
44 rdf:type schema:Person
45 N47c13da7d161414a9438b250c7b27f35 schema:familyName Li
46 schema:givenName Chuandong
47 rdf:type schema:Person
48 N4f054c481a22448387220f5c73826bbf schema:familyName Leung
49 schema:givenName Chi Sing
50 rdf:type schema:Person
51 N5caedf47551945bca74509b4b927cf00 rdf:first N47c13da7d161414a9438b250c7b27f35
52 rdf:rest N894433e7a2024f23b78d0de64104909a
53 N600177c2c3754337b94e0c61cbca07bf rdf:first sg:person.01100527515.43
54 rdf:rest N375705baab5a4c42814e959b922d2f49
55 N6058429d6dfd4a9cb6578bc0b871ac51 schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 N68c9c6546dc64960909f5852f9302947 schema:location Berlin, Heidelberg
58 schema:name Springer Berlin Heidelberg
59 rdf:type schema:Organisation
60 N7af5390bfaea43af9436ad328ee19654 schema:name doi
61 schema:value 10.1007/978-3-642-34487-9_70
62 rdf:type schema:PropertyValue
63 N894433e7a2024f23b78d0de64104909a rdf:first N4f054c481a22448387220f5c73826bbf
64 rdf:rest rdf:nil
65 N8f219046fad34bfbb342ae5470459a5b rdf:first N344d68792ae3433db826448f0e2d32a4
66 rdf:rest N5caedf47551945bca74509b4b927cf00
67 N9226276ba9704b2e90403ebeeb61ee03 rdf:first N46e9f26a056241bf837d4a999ba40acc
68 rdf:rest N8f219046fad34bfbb342ae5470459a5b
69 N963bc48b3065434c84b101570c3f5b22 schema:name readcube_id
70 schema:value b5c8fbebb392a6081a8cfe4287d716373ba8e8aafb98682a723c68637401fd0e
71 rdf:type schema:PropertyValue
72 Ncfcd205446254dfa91776a83df72d7a4 schema:name dimensions_id
73 schema:value pub.1038160393
74 rdf:type schema:PropertyValue
75 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
76 schema:name Information and Computing Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
79 schema:name Artificial Intelligence and Image Processing
80 rdf:type schema:DefinedTerm
81 sg:person.01100527515.43 schema:affiliation https://www.grid.ac/institutes/grid.7155.6
82 schema:familyName Yousri
83 schema:givenName Noha A.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100527515.43
85 rdf:type schema:Person
86 sg:person.01133760566.26 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
87 schema:familyName Kamel
88 schema:givenName Mohamed S.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133760566.26
90 rdf:type schema:Person
91 sg:person.015216606035.39 schema:affiliation https://www.grid.ac/institutes/grid.7155.6
92 schema:familyName Ismail
93 schema:givenName Mohamed A.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015216606035.39
95 rdf:type schema:Person
96 sg:pub.10.1007/978-1-4757-0450-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011935162
97 https://doi.org/10.1007/978-1-4757-0450-1
98 rdf:type schema:CreativeWork
99 sg:pub.10.1186/1471-2105-8-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009905742
100 https://doi.org/10.1186/1471-2105-8-3
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1109/2.781637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061106156
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1109/91.227387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061247668
105 rdf:type schema:CreativeWork
106 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
107 schema:name PAMI, University of Waterloo, Waterloo, Ontario, Canada
108 rdf:type schema:Organization
109 https://www.grid.ac/institutes/grid.7155.6 schema:alternateName Alexandria University
110 schema:name Computer and System Engineering, Faculty of Engineering, Alexandria University, Egypt
111 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...