Complexity Analysis of EEG Data during Rest State and Visual Stimulus View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2012

AUTHORS

Wajid Mumtaz , Likun Xia , Aamir Saeed Malik , Mohd Azhar Mohd Yasin

ABSTRACT

This paper presents an approach to analyze physiological states by observing sample entropy (SampEn) and composite permutation entropy index (CPEI) in the complexity measure of an electroencephalographic (EEG) time series. Three states are observed (eyes closed (EC), eyes open (EO) and game playing) during 2D game environment: the last state is observed during visual stimulus, whereas the rest of them are in resting states. This analysis provides an insight into EEG data for frontal, parietal, occipital, temporal and central regions. The results show a clear discrimination among physiological conditions based on values of SampEn and CPEI in the brain regions. The physiological states discrimination based on EEG recordings may be performed in clinical settings. In addition, based on the discovery, a real-time time monitoring system is being developed for the road safety issue by observing vehicle drivers’ activity and motorbikes on the road in Malaysia. More... »

PAGES

84-91

Book

TITLE

Neural Information Processing

ISBN

978-3-642-34474-9
978-3-642-34475-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-34475-6_11

DOI

http://dx.doi.org/10.1007/978-3-642-34475-6_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010980682


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Universiti Teknologi Petronas", 
          "id": "https://www.grid.ac/institutes/grid.444487.f", 
          "name": [
            "Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 31750\u00a0Tronoh, Perak, Malaysia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mumtaz", 
        "givenName": "Wajid", 
        "id": "sg:person.016161640473.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016161640473.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universiti Teknologi Petronas", 
          "id": "https://www.grid.ac/institutes/grid.444487.f", 
          "name": [
            "Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 31750\u00a0Tronoh, Perak, Malaysia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xia", 
        "givenName": "Likun", 
        "id": "sg:person.01044604201.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044604201.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universiti Teknologi Petronas", 
          "id": "https://www.grid.ac/institutes/grid.444487.f", 
          "name": [
            "Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 31750\u00a0Tronoh, Perak, Malaysia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Malik", 
        "givenName": "Aamir Saeed", 
        "id": "sg:person.0672324450.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672324450.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital Universiti Sains Malaysia", 
          "id": "https://www.grid.ac/institutes/grid.428821.5", 
          "name": [
            "Department of psychiatry, Hospital Universiti Sains Malaysia, Kelantan, Malaysia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yasin", 
        "givenName": "Mohd Azhar Mohd", 
        "id": "sg:person.0733164103.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733164103.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.sigpro.2011.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001477227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.88.6.2297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013915142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/aln.0b013e318182a91b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021309866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/aln.0b013e318182a91b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021309866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2007.06.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026155622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nonrwa.2009.01.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029051938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-1838(97)00028-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031687836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.28.2591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060471424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.28.2591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060471424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.57.617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.57.617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icbbe.2010.5515059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095769986"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "This paper presents an approach to analyze physiological states by observing sample entropy (SampEn) and composite permutation entropy index (CPEI) in the complexity measure of an electroencephalographic (EEG) time series. Three states are observed (eyes closed (EC), eyes open (EO) and game playing) during 2D game environment: the last state is observed during visual stimulus, whereas the rest of them are in resting states. This analysis provides an insight into EEG data for frontal, parietal, occipital, temporal and central regions. The results show a clear discrimination among physiological conditions based on values of SampEn and CPEI in the brain regions. The physiological states discrimination based on EEG recordings may be performed in clinical settings. In addition, based on the discovery, a real-time time monitoring system is being developed for the road safety issue by observing vehicle drivers\u2019 activity and motorbikes on the road in Malaysia.", 
    "editor": [
      {
        "familyName": "Huang", 
        "givenName": "Tingwen", 
        "type": "Person"
      }, 
      {
        "familyName": "Zeng", 
        "givenName": "Zhigang", 
        "type": "Person"
      }, 
      {
        "familyName": "Li", 
        "givenName": "Chuandong", 
        "type": "Person"
      }, 
      {
        "familyName": "Leung", 
        "givenName": "Chi Sing", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-34475-6_11", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-34474-9", 
        "978-3-642-34475-6"
      ], 
      "name": "Neural Information Processing", 
      "type": "Book"
    }, 
    "name": "Complexity Analysis of EEG Data during Rest State and Visual Stimulus", 
    "pagination": "84-91", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-34475-6_11"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "345173f7d8ec517c65480b225b62fb372b4af3fa4c67b3df68ec161601e1557e"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010980682"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-34475-6_11", 
      "https://app.dimensions.ai/details/publication/pub.1010980682"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T19:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000249.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-34475-6_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-34475-6_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-34475-6_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-34475-6_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-34475-6_11'


 

This table displays all metadata directly associated to this object as RDF triples.

131 TRIPLES      23 PREDICATES      36 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-34475-6_11 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author Nf064002b9803443b9bb79f5910d966d2
4 schema:citation https://doi.org/10.1016/j.clinph.2007.06.018
5 https://doi.org/10.1016/j.nonrwa.2009.01.047
6 https://doi.org/10.1016/j.sigpro.2011.08.005
7 https://doi.org/10.1016/s0165-1838(97)00028-3
8 https://doi.org/10.1073/pnas.88.6.2297
9 https://doi.org/10.1097/aln.0b013e318182a91b
10 https://doi.org/10.1103/physreva.28.2591
11 https://doi.org/10.1103/revmodphys.57.617
12 https://doi.org/10.1109/icbbe.2010.5515059
13 schema:datePublished 2012
14 schema:datePublishedReg 2012-01-01
15 schema:description This paper presents an approach to analyze physiological states by observing sample entropy (SampEn) and composite permutation entropy index (CPEI) in the complexity measure of an electroencephalographic (EEG) time series. Three states are observed (eyes closed (EC), eyes open (EO) and game playing) during 2D game environment: the last state is observed during visual stimulus, whereas the rest of them are in resting states. This analysis provides an insight into EEG data for frontal, parietal, occipital, temporal and central regions. The results show a clear discrimination among physiological conditions based on values of SampEn and CPEI in the brain regions. The physiological states discrimination based on EEG recordings may be performed in clinical settings. In addition, based on the discovery, a real-time time monitoring system is being developed for the road safety issue by observing vehicle drivers’ activity and motorbikes on the road in Malaysia.
16 schema:editor N3e1e3c43751c4d25a20a51757dfa5f6f
17 schema:genre chapter
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N24c7555a648e4ae69343dca3956d7576
21 schema:name Complexity Analysis of EEG Data during Rest State and Visual Stimulus
22 schema:pagination 84-91
23 schema:productId N4c9740d35f5d4065a9cc1bae1874c3cf
24 N5cf95af4cd5e401e8c17c34bbe0c5ad3
25 Nc4061dccec2940098b6f48b664282f5f
26 schema:publisher N8aa7883947ea48f3bc26dc15d4bbe7e0
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010980682
28 https://doi.org/10.1007/978-3-642-34475-6_11
29 schema:sdDatePublished 2019-04-15T19:07
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N590a32224a844e218238243d150ef4a3
32 schema:url http://link.springer.com/10.1007/978-3-642-34475-6_11
33 sgo:license sg:explorer/license/
34 sgo:sdDataset chapters
35 rdf:type schema:Chapter
36 N0a5688983f354a288a67fa2bd6e3c6b9 rdf:first Nd00bfac1c6a14e18821b1f357f1a4e5c
37 rdf:rest N5a4bbd6327a645bd94d7f8578773da86
38 N24c7555a648e4ae69343dca3956d7576 schema:isbn 978-3-642-34474-9
39 978-3-642-34475-6
40 schema:name Neural Information Processing
41 rdf:type schema:Book
42 N3e1e3c43751c4d25a20a51757dfa5f6f rdf:first N8bb3807921da4f75a08a414f2a1aef27
43 rdf:rest N0a5688983f354a288a67fa2bd6e3c6b9
44 N4c9740d35f5d4065a9cc1bae1874c3cf schema:name readcube_id
45 schema:value 345173f7d8ec517c65480b225b62fb372b4af3fa4c67b3df68ec161601e1557e
46 rdf:type schema:PropertyValue
47 N590a32224a844e218238243d150ef4a3 schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 N5a4bbd6327a645bd94d7f8578773da86 rdf:first N843bedea02854f6fa97c46c1891d6290
50 rdf:rest Nec89c256143e4b2f8ece14aa7be90f2d
51 N5cf95af4cd5e401e8c17c34bbe0c5ad3 schema:name doi
52 schema:value 10.1007/978-3-642-34475-6_11
53 rdf:type schema:PropertyValue
54 N843bedea02854f6fa97c46c1891d6290 schema:familyName Li
55 schema:givenName Chuandong
56 rdf:type schema:Person
57 N8aa7883947ea48f3bc26dc15d4bbe7e0 schema:location Berlin, Heidelberg
58 schema:name Springer Berlin Heidelberg
59 rdf:type schema:Organisation
60 N8bb3807921da4f75a08a414f2a1aef27 schema:familyName Huang
61 schema:givenName Tingwen
62 rdf:type schema:Person
63 Nafd58b32639645a4b20b84e75009596a rdf:first sg:person.01044604201.49
64 rdf:rest Nd560ebff561e41ab805585c270a0c649
65 Nb94f60c0002b47109aa34cbb2b846837 rdf:first sg:person.0733164103.28
66 rdf:rest rdf:nil
67 Nc3bf9a8b76ca403e9ba7ef9ac7e8e409 schema:familyName Leung
68 schema:givenName Chi Sing
69 rdf:type schema:Person
70 Nc4061dccec2940098b6f48b664282f5f schema:name dimensions_id
71 schema:value pub.1010980682
72 rdf:type schema:PropertyValue
73 Nd00bfac1c6a14e18821b1f357f1a4e5c schema:familyName Zeng
74 schema:givenName Zhigang
75 rdf:type schema:Person
76 Nd560ebff561e41ab805585c270a0c649 rdf:first sg:person.0672324450.28
77 rdf:rest Nb94f60c0002b47109aa34cbb2b846837
78 Nec89c256143e4b2f8ece14aa7be90f2d rdf:first Nc3bf9a8b76ca403e9ba7ef9ac7e8e409
79 rdf:rest rdf:nil
80 Nf064002b9803443b9bb79f5910d966d2 rdf:first sg:person.016161640473.85
81 rdf:rest Nafd58b32639645a4b20b84e75009596a
82 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
83 schema:name Psychology and Cognitive Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
86 schema:name Psychology
87 rdf:type schema:DefinedTerm
88 sg:person.01044604201.49 schema:affiliation https://www.grid.ac/institutes/grid.444487.f
89 schema:familyName Xia
90 schema:givenName Likun
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044604201.49
92 rdf:type schema:Person
93 sg:person.016161640473.85 schema:affiliation https://www.grid.ac/institutes/grid.444487.f
94 schema:familyName Mumtaz
95 schema:givenName Wajid
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016161640473.85
97 rdf:type schema:Person
98 sg:person.0672324450.28 schema:affiliation https://www.grid.ac/institutes/grid.444487.f
99 schema:familyName Malik
100 schema:givenName Aamir Saeed
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672324450.28
102 rdf:type schema:Person
103 sg:person.0733164103.28 schema:affiliation https://www.grid.ac/institutes/grid.428821.5
104 schema:familyName Yasin
105 schema:givenName Mohd Azhar Mohd
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733164103.28
107 rdf:type schema:Person
108 https://doi.org/10.1016/j.clinph.2007.06.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026155622
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.nonrwa.2009.01.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029051938
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.sigpro.2011.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001477227
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/s0165-1838(97)00028-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031687836
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1073/pnas.88.6.2297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013915142
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1097/aln.0b013e318182a91b schema:sameAs https://app.dimensions.ai/details/publication/pub.1021309866
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1103/physreva.28.2591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060471424
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1103/revmodphys.57.617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839073
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1109/icbbe.2010.5515059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095769986
125 rdf:type schema:CreativeWork
126 https://www.grid.ac/institutes/grid.428821.5 schema:alternateName Hospital Universiti Sains Malaysia
127 schema:name Department of psychiatry, Hospital Universiti Sains Malaysia, Kelantan, Malaysia
128 rdf:type schema:Organization
129 https://www.grid.ac/institutes/grid.444487.f schema:alternateName Universiti Teknologi Petronas
130 schema:name Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 31750 Tronoh, Perak, Malaysia
131 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...