Declarative Modeling for Machine Learning and Data Mining View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2012

AUTHORS

Luc De Raedt

ABSTRACT

Despite the popularity of machine learning and data mining today, it remains challenging to develop applications and software that incorporates machine learning or data mining techniques. This is because machine learning and data mining have focussed on developing high-performance algorithms for solving particular tasks rather than on developing general principles and techniques. I propose to alleviate these problems by applying the constraint programming methodology to machine learning and data mining and to specify machine learning and data mining problems as constraint satisfaction and optimization problems. What is essential is that the user be provided with a way to declaratively specify what the machine learning or data mining problem is rather than having to outline how that solution needs to be computed. This corresponds to a model + solver-based approach to machine learning and data mining, in which the user specifies the problem in a high level modeling language and the system automatically transforms such models into a format that can be used by a solver to efficiently generate a solution. This should be much easier for the user than having to implement or adapt an algorithm that computes a particular solution to a specific problem. Throughout the talk, I shall use illustrations from our work on constraint programming for itemset mining and probabilistic programming. More... »

PAGES

12-12

Book

TITLE

Algorithmic Learning Theory

ISBN

978-3-642-34105-2
978-3-642-34106-9

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-34106-9_2

DOI

http://dx.doi.org/10.1007/978-3-642-34106-9_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006204089


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "KU Leuven", 
          "id": "https://www.grid.ac/institutes/grid.5596.f", 
          "name": [
            "Department of Computer Science, Katholieke Universiteit Leuven, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "De Raedt", 
        "givenName": "Luc", 
        "id": "sg:person.015333627665.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015333627665.77"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "Despite the popularity of machine learning and data mining today, it remains challenging to develop applications and software that incorporates machine learning or data mining techniques. This is because machine learning and data mining have focussed on developing high-performance algorithms for solving particular tasks rather than on developing general principles and techniques. I propose to alleviate these problems by applying the constraint programming methodology to machine learning and data mining and to specify machine learning and data mining problems as constraint satisfaction and optimization problems. What is essential is that the user be provided with a way to declaratively specify what the machine learning or data mining problem is rather than having to outline how that solution needs to be computed. This corresponds to a model + solver-based approach to machine learning and data mining, in which the user specifies the problem in a high level modeling language and the system automatically transforms such models into a format that can be used by a solver to efficiently generate a solution. This should be much easier for the user than having to implement or adapt an algorithm that computes a particular solution to a specific problem. Throughout the talk, I shall use illustrations from our work on constraint programming for itemset mining and probabilistic programming.", 
    "editor": [
      {
        "familyName": "Bshouty", 
        "givenName": "Nader H.", 
        "type": "Person"
      }, 
      {
        "familyName": "Stoltz", 
        "givenName": "Gilles", 
        "type": "Person"
      }, 
      {
        "familyName": "Vayatis", 
        "givenName": "Nicolas", 
        "type": "Person"
      }, 
      {
        "familyName": "Zeugmann", 
        "givenName": "Thomas", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-34106-9_2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-34105-2", 
        "978-3-642-34106-9"
      ], 
      "name": "Algorithmic Learning Theory", 
      "type": "Book"
    }, 
    "name": "Declarative Modeling for Machine Learning and Data Mining", 
    "pagination": "12-12", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-34106-9_2"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1d8d896bf2a71271597a457ead854a10ad88c9551051cb3d02b49dfac603b172"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006204089"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-34106-9_2", 
      "https://app.dimensions.ai/details/publication/pub.1006204089"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T15:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000010.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-34106-9_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-34106-9_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-34106-9_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-34106-9_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-34106-9_2'


 

This table displays all metadata directly associated to this object as RDF triples.

80 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-34106-9_2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N0b40ca626f8d44bfb10e374bdc4d3f23
4 schema:datePublished 2012
5 schema:datePublishedReg 2012-01-01
6 schema:description Despite the popularity of machine learning and data mining today, it remains challenging to develop applications and software that incorporates machine learning or data mining techniques. This is because machine learning and data mining have focussed on developing high-performance algorithms for solving particular tasks rather than on developing general principles and techniques. I propose to alleviate these problems by applying the constraint programming methodology to machine learning and data mining and to specify machine learning and data mining problems as constraint satisfaction and optimization problems. What is essential is that the user be provided with a way to declaratively specify what the machine learning or data mining problem is rather than having to outline how that solution needs to be computed. This corresponds to a model + solver-based approach to machine learning and data mining, in which the user specifies the problem in a high level modeling language and the system automatically transforms such models into a format that can be used by a solver to efficiently generate a solution. This should be much easier for the user than having to implement or adapt an algorithm that computes a particular solution to a specific problem. Throughout the talk, I shall use illustrations from our work on constraint programming for itemset mining and probabilistic programming.
7 schema:editor Nc6d9d33990d841aea631d5adecd51909
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N39077816ac654f00b26aa637d64309a8
12 schema:name Declarative Modeling for Machine Learning and Data Mining
13 schema:pagination 12-12
14 schema:productId N78e4db5a04b44fc9bc7aa99bc5ab5d0b
15 N836632bbb0df443baa30bda698dab40a
16 Nb3431cb1fbc24a85a66fa6833015cd14
17 schema:publisher N65cad5e69f4b4dbc9b3963e0d563ff63
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006204089
19 https://doi.org/10.1007/978-3-642-34106-9_2
20 schema:sdDatePublished 2019-04-15T15:05
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Nde9bfa5783fe4682bd4cc0e211237ccb
23 schema:url http://link.springer.com/10.1007/978-3-642-34106-9_2
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N01b1c54530314ac0abfe2a05079224e5 schema:familyName Stoltz
28 schema:givenName Gilles
29 rdf:type schema:Person
30 N064e42d7a5c84474b45dd1913aa60244 schema:familyName Zeugmann
31 schema:givenName Thomas
32 rdf:type schema:Person
33 N0b40ca626f8d44bfb10e374bdc4d3f23 rdf:first sg:person.015333627665.77
34 rdf:rest rdf:nil
35 N1fd0e082c71f41b492277e273e3bc7b9 rdf:first N064e42d7a5c84474b45dd1913aa60244
36 rdf:rest rdf:nil
37 N39077816ac654f00b26aa637d64309a8 schema:isbn 978-3-642-34105-2
38 978-3-642-34106-9
39 schema:name Algorithmic Learning Theory
40 rdf:type schema:Book
41 N4941a359b2114da29ee7ed57486e07f2 schema:familyName Vayatis
42 schema:givenName Nicolas
43 rdf:type schema:Person
44 N65cad5e69f4b4dbc9b3963e0d563ff63 schema:location Berlin, Heidelberg
45 schema:name Springer Berlin Heidelberg
46 rdf:type schema:Organisation
47 N78e4db5a04b44fc9bc7aa99bc5ab5d0b schema:name doi
48 schema:value 10.1007/978-3-642-34106-9_2
49 rdf:type schema:PropertyValue
50 N836632bbb0df443baa30bda698dab40a schema:name dimensions_id
51 schema:value pub.1006204089
52 rdf:type schema:PropertyValue
53 N86e679d1e5224f12ad3457bb291e1dd1 schema:familyName Bshouty
54 schema:givenName Nader H.
55 rdf:type schema:Person
56 Na14d6849ea2d4c9e9a85f4742549ff45 rdf:first N01b1c54530314ac0abfe2a05079224e5
57 rdf:rest Nc9ab16075197462c89ed61d38995db99
58 Nb3431cb1fbc24a85a66fa6833015cd14 schema:name readcube_id
59 schema:value 1d8d896bf2a71271597a457ead854a10ad88c9551051cb3d02b49dfac603b172
60 rdf:type schema:PropertyValue
61 Nc6d9d33990d841aea631d5adecd51909 rdf:first N86e679d1e5224f12ad3457bb291e1dd1
62 rdf:rest Na14d6849ea2d4c9e9a85f4742549ff45
63 Nc9ab16075197462c89ed61d38995db99 rdf:first N4941a359b2114da29ee7ed57486e07f2
64 rdf:rest N1fd0e082c71f41b492277e273e3bc7b9
65 Nde9bfa5783fe4682bd4cc0e211237ccb schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
68 schema:name Information and Computing Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
71 schema:name Artificial Intelligence and Image Processing
72 rdf:type schema:DefinedTerm
73 sg:person.015333627665.77 schema:affiliation https://www.grid.ac/institutes/grid.5596.f
74 schema:familyName De Raedt
75 schema:givenName Luc
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015333627665.77
77 rdf:type schema:Person
78 https://www.grid.ac/institutes/grid.5596.f schema:alternateName KU Leuven
79 schema:name Department of Computer Science, Katholieke Universiteit Leuven, Belgium
80 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...