How Does Aging Affect Facial Components? View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2012

AUTHORS

Charles Otto , Hu Han , Anil Jain

ABSTRACT

There is growing interest in achieving age invariant face recognition due to its wide applications in law enforcement. The challenge lies in that face aging is quite a complicated process, which involves both intrinsic and extrinsic factors. Face aging also influences individual facial components (such as the mouth, eyes, and nose) differently. We propose a component based method for age invariant face recognition. Facial components are automatically localized based on landmarks detected using an Active Shape Model. Multi-scale local binary pattern and scale-invariant feature transform features are then extracted from each component, followed by random subspace linear discriminant analysis for classification. With a component based representation, we study how aging influences individual facial components on two large aging databases (MORPH Album2 and PCSO). Per component performance analysis shows that the nose is the most stable component during face aging. Age invariant recognition exploiting demographics shows that face aging has more influence on females than males. Overall, recognition performance on the two databases shows that the proposed component based approach is more robust to large time lapses than FaceVACS, a leading commercial face matcher. More... »

PAGES

189-198

Book

TITLE

Computer Vision – ECCV 2012. Workshops and Demonstrations

ISBN

978-3-642-33867-0
978-3-642-33868-7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-33868-7_19

DOI

http://dx.doi.org/10.1007/978-3-642-33868-7_19

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034650956


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Michigan State University, USA", 
          "id": "http://www.grid.ac/institutes/grid.17088.36", 
          "name": [
            "Michigan State University, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Otto", 
        "givenName": "Charles", 
        "id": "sg:person.012043515626.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012043515626.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Michigan State University, USA", 
          "id": "http://www.grid.ac/institutes/grid.17088.36", 
          "name": [
            "Michigan State University, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Hu", 
        "id": "sg:person.016137607402.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016137607402.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Michigan State University, USA", 
          "id": "http://www.grid.ac/institutes/grid.17088.36", 
          "name": [
            "Michigan State University, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jain", 
        "givenName": "Anil", 
        "id": "sg:person.01031110710.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031110710.30"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "There is growing interest in achieving age invariant face recognition due to its wide applications in law enforcement. The challenge lies in that face aging is quite a complicated process, which involves both intrinsic and extrinsic factors. Face aging also influences individual facial components (such as the mouth, eyes, and nose) differently. We propose a component based method for age invariant face recognition. Facial components are automatically localized based on landmarks detected using an Active Shape Model. Multi-scale local binary pattern and scale-invariant feature transform features are then extracted from each component, followed by random subspace linear discriminant analysis for classification. With a component based representation, we study how aging influences individual facial components on two large aging databases (MORPH Album2 and PCSO). Per component performance analysis shows that the nose is the most stable component during face aging. Age invariant recognition exploiting demographics shows that face aging has more influence on females than males. Overall, recognition performance on the two databases shows that the proposed component based approach is more robust to large time lapses than FaceVACS, a leading commercial face matcher.", 
    "editor": [
      {
        "familyName": "Fusiello", 
        "givenName": "Andrea", 
        "type": "Person"
      }, 
      {
        "familyName": "Murino", 
        "givenName": "Vittorio", 
        "type": "Person"
      }, 
      {
        "familyName": "Cucchiara", 
        "givenName": "Rita", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-33868-7_19", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-33867-0", 
        "978-3-642-33868-7"
      ], 
      "name": "Computer Vision \u2013 ECCV 2012. Workshops and Demonstrations", 
      "type": "Book"
    }, 
    "keywords": [
      "age-invariant face recognition", 
      "individual facial components", 
      "face aging", 
      "facial components", 
      "invariant face recognition", 
      "face recognition", 
      "recognition performance", 
      "Aging Database", 
      "face", 
      "FaceVACS", 
      "recognition", 
      "Active Shape Model", 
      "more influence", 
      "aging", 
      "law enforcement", 
      "lapse", 
      "extrinsic factors", 
      "shape model", 
      "representation", 
      "stable component", 
      "face matcher", 
      "discriminant analysis", 
      "multi-scale local binary patterns", 
      "scale-invariant feature transform features", 
      "Local Binary Pattern", 
      "performance", 
      "components", 
      "commercial face matcher", 
      "binary pattern", 
      "influence", 
      "transform features", 
      "demographics", 
      "complicated process", 
      "component performance analysis", 
      "process", 
      "factors", 
      "landmarks", 
      "patterns", 
      "subspace linear discriminant analysis", 
      "linear discriminant analysis", 
      "interest", 
      "model", 
      "features", 
      "analysis", 
      "performance analysis", 
      "females", 
      "males", 
      "matcher", 
      "challenges", 
      "approach", 
      "time lapse", 
      "classification", 
      "wide application", 
      "enforcement", 
      "database", 
      "applications", 
      "method", 
      "nose", 
      "large time lapse"
    ], 
    "name": "How Does Aging Affect Facial Components?", 
    "pagination": "189-198", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034650956"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-33868-7_19"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-33868-7_19", 
      "https://app.dimensions.ai/details/publication/pub.1034650956"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_264.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-33868-7_19"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33868-7_19'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33868-7_19'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33868-7_19'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33868-7_19'


 

This table displays all metadata directly associated to this object as RDF triples.

142 TRIPLES      22 PREDICATES      84 URIs      77 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-33868-7_19 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N07cf069633234af28b96129ca8dfed29
4 schema:datePublished 2012
5 schema:datePublishedReg 2012-01-01
6 schema:description There is growing interest in achieving age invariant face recognition due to its wide applications in law enforcement. The challenge lies in that face aging is quite a complicated process, which involves both intrinsic and extrinsic factors. Face aging also influences individual facial components (such as the mouth, eyes, and nose) differently. We propose a component based method for age invariant face recognition. Facial components are automatically localized based on landmarks detected using an Active Shape Model. Multi-scale local binary pattern and scale-invariant feature transform features are then extracted from each component, followed by random subspace linear discriminant analysis for classification. With a component based representation, we study how aging influences individual facial components on two large aging databases (MORPH Album2 and PCSO). Per component performance analysis shows that the nose is the most stable component during face aging. Age invariant recognition exploiting demographics shows that face aging has more influence on females than males. Overall, recognition performance on the two databases shows that the proposed component based approach is more robust to large time lapses than FaceVACS, a leading commercial face matcher.
7 schema:editor N8beaff177a004fe9bfa32cf05419b951
8 schema:genre chapter
9 schema:isAccessibleForFree true
10 schema:isPartOf N05571a8a4b96475d82963ea589cf0b08
11 schema:keywords Active Shape Model
12 Aging Database
13 FaceVACS
14 Local Binary Pattern
15 age-invariant face recognition
16 aging
17 analysis
18 applications
19 approach
20 binary pattern
21 challenges
22 classification
23 commercial face matcher
24 complicated process
25 component performance analysis
26 components
27 database
28 demographics
29 discriminant analysis
30 enforcement
31 extrinsic factors
32 face
33 face aging
34 face matcher
35 face recognition
36 facial components
37 factors
38 features
39 females
40 individual facial components
41 influence
42 interest
43 invariant face recognition
44 landmarks
45 lapse
46 large time lapse
47 law enforcement
48 linear discriminant analysis
49 males
50 matcher
51 method
52 model
53 more influence
54 multi-scale local binary patterns
55 nose
56 patterns
57 performance
58 performance analysis
59 process
60 recognition
61 recognition performance
62 representation
63 scale-invariant feature transform features
64 shape model
65 stable component
66 subspace linear discriminant analysis
67 time lapse
68 transform features
69 wide application
70 schema:name How Does Aging Affect Facial Components?
71 schema:pagination 189-198
72 schema:productId N5450aaaeb3e545f5843fc66dd64c4b4b
73 Nd7dfba5b5dfe4b568b3ded5c566c8696
74 schema:publisher Nc078739875d44ba98be16e1623203e05
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034650956
76 https://doi.org/10.1007/978-3-642-33868-7_19
77 schema:sdDatePublished 2022-12-01T06:49
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher N37f3b3830a0e47ae8adb519830707e44
80 schema:url https://doi.org/10.1007/978-3-642-33868-7_19
81 sgo:license sg:explorer/license/
82 sgo:sdDataset chapters
83 rdf:type schema:Chapter
84 N05571a8a4b96475d82963ea589cf0b08 schema:isbn 978-3-642-33867-0
85 978-3-642-33868-7
86 schema:name Computer Vision – ECCV 2012. Workshops and Demonstrations
87 rdf:type schema:Book
88 N07cf069633234af28b96129ca8dfed29 rdf:first sg:person.012043515626.00
89 rdf:rest N5a1684bd0fbf4125893c2b9c25ff38fd
90 N08d1116754fb4dc0beb4c18b819184f7 schema:familyName Fusiello
91 schema:givenName Andrea
92 rdf:type schema:Person
93 N37f3b3830a0e47ae8adb519830707e44 schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 N5450aaaeb3e545f5843fc66dd64c4b4b schema:name dimensions_id
96 schema:value pub.1034650956
97 rdf:type schema:PropertyValue
98 N5a1684bd0fbf4125893c2b9c25ff38fd rdf:first sg:person.016137607402.97
99 rdf:rest Nbdf6522a50244f14b79e673335c98046
100 N87d3b6aeebcb44fe9bf513848b1ba446 rdf:first Nf5668950ff4542b7ab994470cf166fc0
101 rdf:rest Nbc79acf0eeb94eeb84d02744388da200
102 N8beaff177a004fe9bfa32cf05419b951 rdf:first N08d1116754fb4dc0beb4c18b819184f7
103 rdf:rest N87d3b6aeebcb44fe9bf513848b1ba446
104 N8fc103e437e745a993a864205e9c29a1 schema:familyName Cucchiara
105 schema:givenName Rita
106 rdf:type schema:Person
107 Nbc79acf0eeb94eeb84d02744388da200 rdf:first N8fc103e437e745a993a864205e9c29a1
108 rdf:rest rdf:nil
109 Nbdf6522a50244f14b79e673335c98046 rdf:first sg:person.01031110710.30
110 rdf:rest rdf:nil
111 Nc078739875d44ba98be16e1623203e05 schema:name Springer Nature
112 rdf:type schema:Organisation
113 Nd7dfba5b5dfe4b568b3ded5c566c8696 schema:name doi
114 schema:value 10.1007/978-3-642-33868-7_19
115 rdf:type schema:PropertyValue
116 Nf5668950ff4542b7ab994470cf166fc0 schema:familyName Murino
117 schema:givenName Vittorio
118 rdf:type schema:Person
119 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
120 schema:name Information and Computing Sciences
121 rdf:type schema:DefinedTerm
122 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
123 schema:name Artificial Intelligence and Image Processing
124 rdf:type schema:DefinedTerm
125 sg:person.01031110710.30 schema:affiliation grid-institutes:grid.17088.36
126 schema:familyName Jain
127 schema:givenName Anil
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031110710.30
129 rdf:type schema:Person
130 sg:person.012043515626.00 schema:affiliation grid-institutes:grid.17088.36
131 schema:familyName Otto
132 schema:givenName Charles
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012043515626.00
134 rdf:type schema:Person
135 sg:person.016137607402.97 schema:affiliation grid-institutes:grid.17088.36
136 schema:familyName Han
137 schema:givenName Hu
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016137607402.97
139 rdf:type schema:Person
140 grid-institutes:grid.17088.36 schema:alternateName Michigan State University, USA
141 schema:name Michigan State University, USA
142 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...