Segmentation Propagation in ImageNet View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2012

AUTHORS

Daniel Kuettel , Matthieu Guillaumin , Vittorio Ferrari

ABSTRACT

ImageNet is a large-scale hierarchical database of object classes. We propose to automatically populate it with pixelwise segmentations, by leveraging existing manual annotations in the form of class labels and bounding-boxes. The key idea is to recursively exploit images segmented so far to guide the segmentation of new images. At each stage this propagation process expands into the images which are easiest to segment at that point in time, e.g. by moving to the semantically most related classes to those segmented so far. The propagation of segmentation occurs both (a) at the image level, by transferring existing segmentations to estimate the probability of a pixel to be foreground, and (b) at the class level, by jointly segmenting images of the same class and by importing the appearance models of classes that are already segmented. Through an experiment on 577 classes and 500k images we show that our technique (i) annotates a wide range of classes with accurate segmentations; (ii) effectively exploits the hierarchical structure of ImageNet; (iii) scales efficiently; (iv) outperforms a baseline GrabCut [1] initialized on the image center, as well as our recent segmentation transfer technique [2] on which this paper is based. Moreover, our method also delivers state-of-the-art results on the recent iCoseg dataset for co-segmentation. More... »

PAGES

459-473

References to SciGraph publications

Book

TITLE

Computer Vision – ECCV 2012

ISBN

978-3-642-33785-7
978-3-642-33786-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-33786-4_34

DOI

http://dx.doi.org/10.1007/978-3-642-33786-4_34

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036601217


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Edinburgh", 
          "id": "https://www.grid.ac/institutes/grid.4305.2", 
          "name": [
            "University of Edinburgh, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuettel", 
        "givenName": "Daniel", 
        "id": "sg:person.015210073613.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015210073613.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute of Technology in Zurich", 
          "id": "https://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "ETH Z\u00fcrich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guillaumin", 
        "givenName": "Matthieu", 
        "id": "sg:person.015567166075.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015567166075.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Edinburgh", 
          "id": "https://www.grid.ac/institutes/grid.4305.2", 
          "name": [
            "University of Edinburgh, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ferrari", 
        "givenName": "Vittorio", 
        "id": "sg:person.012253346261.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012253346261.12"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11263-005-6642-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001468231", 
          "https://doi.org/10.1007/s11263-005-6642-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cviu.2005.09.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004784969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11744023_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017544873", 
          "https://doi.org/10.1007/11744023_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11744023_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017544873", 
          "https://doi.org/10.1007/11744023_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-24670-1_33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017586951", 
          "https://doi.org/10.1007/978-3-540-24670-1_33"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-24670-1_33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017586951", 
          "https://doi.org/10.1007/978-3-540-24670-1_33"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1186562.1015720", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022236987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11263-010-0415-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051801565", 
          "https://doi.org/10.1007/s11263-010-0415-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-88688-4_43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052807962", 
          "https://doi.org/10.1007/978-3-540-88688-4_43"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-88688-4_43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052807962", 
          "https://doi.org/10.1007/978-3-540-88688-4_43"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2008.4587633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093176609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2009.5459307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093184768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2011.5995720", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093267704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2004.314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093364701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2011.5995530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093473548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2011.5995432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093481891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2007.383011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093495009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2010.5540064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093507611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2011.5995357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093553344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2008.4587440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093603275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2009.5206581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093639534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2006.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093699646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2010.5539868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093759710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2005.37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093770091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2012.6247721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093882752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2005.63", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093988741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2007.383098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094188258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2007.4408973", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094197282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2010.5540080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094242240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2011.6126239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094397305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2010.5540063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094461024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2012.6248055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094485704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2009.5206594", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094500840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2010.5540226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094653828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2012.6248043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094742433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2005.148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095125400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2011.6126546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095266833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2001.937505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095383001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2011.6126391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095573215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2011.5995597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095672986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2009.5206848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095689025"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "ImageNet is a large-scale hierarchical database of object classes. We propose to automatically populate it with pixelwise segmentations, by leveraging existing manual annotations in the form of class labels and bounding-boxes. The key idea is to recursively exploit images segmented so far to guide the segmentation of new images. At each stage this propagation process expands into the images which are easiest to segment at that point in time, e.g. by moving to the semantically most related classes to those segmented so far. The propagation of segmentation occurs both (a) at the image level, by transferring existing segmentations to estimate the probability of a pixel to be foreground, and (b) at the class level, by jointly segmenting images of the same class and by importing the appearance models of classes that are already segmented. Through an experiment on 577 classes and 500k images we show that our technique (i) annotates a wide range of classes with accurate segmentations; (ii) effectively exploits the hierarchical structure of ImageNet; (iii) scales efficiently; (iv) outperforms a baseline GrabCut [1] initialized on the image center, as well as our recent segmentation transfer technique [2] on which this paper is based. Moreover, our method also delivers state-of-the-art results on the recent iCoseg dataset for co-segmentation.", 
    "editor": [
      {
        "familyName": "Fitzgibbon", 
        "givenName": "Andrew", 
        "type": "Person"
      }, 
      {
        "familyName": "Lazebnik", 
        "givenName": "Svetlana", 
        "type": "Person"
      }, 
      {
        "familyName": "Perona", 
        "givenName": "Pietro", 
        "type": "Person"
      }, 
      {
        "familyName": "Sato", 
        "givenName": "Yoichi", 
        "type": "Person"
      }, 
      {
        "familyName": "Schmid", 
        "givenName": "Cordelia", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-33786-4_34", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-33785-7", 
        "978-3-642-33786-4"
      ], 
      "name": "Computer Vision \u2013 ECCV 2012", 
      "type": "Book"
    }, 
    "name": "Segmentation Propagation in ImageNet", 
    "pagination": "459-473", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-33786-4_34"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ae5aec3b145c9e965576e6b7e778e744899cf6f6789465fdecea172df569844d"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036601217"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-33786-4_34", 
      "https://app.dimensions.ai/details/publication/pub.1036601217"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T00:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000063.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-33786-4_34"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33786-4_34'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33786-4_34'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33786-4_34'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33786-4_34'


 

This table displays all metadata directly associated to this object as RDF triples.

221 TRIPLES      23 PREDICATES      65 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-33786-4_34 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nd80bf51f9d47423eac338afd1585d5eb
4 schema:citation sg:pub.10.1007/11744023_1
5 sg:pub.10.1007/978-3-540-24670-1_33
6 sg:pub.10.1007/978-3-540-88688-4_43
7 sg:pub.10.1007/s11263-005-6642-x
8 sg:pub.10.1007/s11263-010-0415-x
9 https://doi.org/10.1016/j.cviu.2005.09.012
10 https://doi.org/10.1109/cvpr.2004.314
11 https://doi.org/10.1109/cvpr.2006.91
12 https://doi.org/10.1109/cvpr.2007.383011
13 https://doi.org/10.1109/cvpr.2007.383098
14 https://doi.org/10.1109/cvpr.2008.4587440
15 https://doi.org/10.1109/cvpr.2008.4587633
16 https://doi.org/10.1109/cvpr.2009.5206581
17 https://doi.org/10.1109/cvpr.2009.5206594
18 https://doi.org/10.1109/cvpr.2009.5206848
19 https://doi.org/10.1109/cvpr.2010.5539868
20 https://doi.org/10.1109/cvpr.2010.5540063
21 https://doi.org/10.1109/cvpr.2010.5540064
22 https://doi.org/10.1109/cvpr.2010.5540080
23 https://doi.org/10.1109/cvpr.2010.5540226
24 https://doi.org/10.1109/cvpr.2011.5995357
25 https://doi.org/10.1109/cvpr.2011.5995432
26 https://doi.org/10.1109/cvpr.2011.5995530
27 https://doi.org/10.1109/cvpr.2011.5995597
28 https://doi.org/10.1109/cvpr.2011.5995720
29 https://doi.org/10.1109/cvpr.2012.6247721
30 https://doi.org/10.1109/cvpr.2012.6248043
31 https://doi.org/10.1109/cvpr.2012.6248055
32 https://doi.org/10.1109/iccv.2001.937505
33 https://doi.org/10.1109/iccv.2005.148
34 https://doi.org/10.1109/iccv.2005.37
35 https://doi.org/10.1109/iccv.2005.63
36 https://doi.org/10.1109/iccv.2007.4408973
37 https://doi.org/10.1109/iccv.2009.5459307
38 https://doi.org/10.1109/iccv.2011.6126239
39 https://doi.org/10.1109/iccv.2011.6126391
40 https://doi.org/10.1109/iccv.2011.6126546
41 https://doi.org/10.1145/1186562.1015720
42 schema:datePublished 2012
43 schema:datePublishedReg 2012-01-01
44 schema:description ImageNet is a large-scale hierarchical database of object classes. We propose to automatically populate it with pixelwise segmentations, by leveraging existing manual annotations in the form of class labels and bounding-boxes. The key idea is to recursively exploit images segmented so far to guide the segmentation of new images. At each stage this propagation process expands into the images which are easiest to segment at that point in time, e.g. by moving to the semantically most related classes to those segmented so far. The propagation of segmentation occurs both (a) at the image level, by transferring existing segmentations to estimate the probability of a pixel to be foreground, and (b) at the class level, by jointly segmenting images of the same class and by importing the appearance models of classes that are already segmented. Through an experiment on 577 classes and 500k images we show that our technique (i) annotates a wide range of classes with accurate segmentations; (ii) effectively exploits the hierarchical structure of ImageNet; (iii) scales efficiently; (iv) outperforms a baseline GrabCut [1] initialized on the image center, as well as our recent segmentation transfer technique [2] on which this paper is based. Moreover, our method also delivers state-of-the-art results on the recent iCoseg dataset for co-segmentation.
45 schema:editor Neec0174fe7ad4821acc80e53ba5a7020
46 schema:genre chapter
47 schema:inLanguage en
48 schema:isAccessibleForFree true
49 schema:isPartOf N5eeeaeec6c0849b6b8b9a2ef3ad367b1
50 schema:name Segmentation Propagation in ImageNet
51 schema:pagination 459-473
52 schema:productId N44f254d96378448db27be72da346bdff
53 Na0682c0120394c2f8bc8aa0027b9e382
54 Na4b424ab38ac42339cd7025f6cb50fec
55 schema:publisher Ndd2af7c4240346ea9bbc3d7e626dd543
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036601217
57 https://doi.org/10.1007/978-3-642-33786-4_34
58 schema:sdDatePublished 2019-04-16T00:36
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N0023647d4c8a4bdcad1b5b62c33785c4
61 schema:url http://link.springer.com/10.1007/978-3-642-33786-4_34
62 sgo:license sg:explorer/license/
63 sgo:sdDataset chapters
64 rdf:type schema:Chapter
65 N0023647d4c8a4bdcad1b5b62c33785c4 schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 N005991a6e7d64b3eb1ed1fd4be520db0 schema:familyName Schmid
68 schema:givenName Cordelia
69 rdf:type schema:Person
70 N08472a868339469b94e59ec2e15d676c schema:familyName Perona
71 schema:givenName Pietro
72 rdf:type schema:Person
73 N0e82d225230249ab839e1edc40c8cbe8 rdf:first N8890dbff337445a6a89b9b89f6f63a06
74 rdf:rest N6510462841f94a21bf24e67872076078
75 N385e5d76cac344159858937001f17c33 rdf:first N60821f02a1ba4787b43381c81a97b627
76 rdf:rest N9c2dd05931f6481ca37228fe224e7dff
77 N44f254d96378448db27be72da346bdff schema:name readcube_id
78 schema:value ae5aec3b145c9e965576e6b7e778e744899cf6f6789465fdecea172df569844d
79 rdf:type schema:PropertyValue
80 N5eeeaeec6c0849b6b8b9a2ef3ad367b1 schema:isbn 978-3-642-33785-7
81 978-3-642-33786-4
82 schema:name Computer Vision – ECCV 2012
83 rdf:type schema:Book
84 N60821f02a1ba4787b43381c81a97b627 schema:familyName Sato
85 schema:givenName Yoichi
86 rdf:type schema:Person
87 N6510462841f94a21bf24e67872076078 rdf:first N08472a868339469b94e59ec2e15d676c
88 rdf:rest N385e5d76cac344159858937001f17c33
89 N8890dbff337445a6a89b9b89f6f63a06 schema:familyName Lazebnik
90 schema:givenName Svetlana
91 rdf:type schema:Person
92 N9c2dd05931f6481ca37228fe224e7dff rdf:first N005991a6e7d64b3eb1ed1fd4be520db0
93 rdf:rest rdf:nil
94 Na0682c0120394c2f8bc8aa0027b9e382 schema:name doi
95 schema:value 10.1007/978-3-642-33786-4_34
96 rdf:type schema:PropertyValue
97 Na4b424ab38ac42339cd7025f6cb50fec schema:name dimensions_id
98 schema:value pub.1036601217
99 rdf:type schema:PropertyValue
100 Nafa0cfd39290482aabb41747a85ca7bc rdf:first sg:person.012253346261.12
101 rdf:rest rdf:nil
102 Nb2b11505b2d246cab4ff668770db421a schema:familyName Fitzgibbon
103 schema:givenName Andrew
104 rdf:type schema:Person
105 Nbd89082baf3b470e85abbf8c2077cab1 rdf:first sg:person.015567166075.11
106 rdf:rest Nafa0cfd39290482aabb41747a85ca7bc
107 Nd80bf51f9d47423eac338afd1585d5eb rdf:first sg:person.015210073613.40
108 rdf:rest Nbd89082baf3b470e85abbf8c2077cab1
109 Ndd2af7c4240346ea9bbc3d7e626dd543 schema:location Berlin, Heidelberg
110 schema:name Springer Berlin Heidelberg
111 rdf:type schema:Organisation
112 Neec0174fe7ad4821acc80e53ba5a7020 rdf:first Nb2b11505b2d246cab4ff668770db421a
113 rdf:rest N0e82d225230249ab839e1edc40c8cbe8
114 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
115 schema:name Information and Computing Sciences
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
118 schema:name Artificial Intelligence and Image Processing
119 rdf:type schema:DefinedTerm
120 sg:person.012253346261.12 schema:affiliation https://www.grid.ac/institutes/grid.4305.2
121 schema:familyName Ferrari
122 schema:givenName Vittorio
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012253346261.12
124 rdf:type schema:Person
125 sg:person.015210073613.40 schema:affiliation https://www.grid.ac/institutes/grid.4305.2
126 schema:familyName Kuettel
127 schema:givenName Daniel
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015210073613.40
129 rdf:type schema:Person
130 sg:person.015567166075.11 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
131 schema:familyName Guillaumin
132 schema:givenName Matthieu
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015567166075.11
134 rdf:type schema:Person
135 sg:pub.10.1007/11744023_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017544873
136 https://doi.org/10.1007/11744023_1
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/978-3-540-24670-1_33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017586951
139 https://doi.org/10.1007/978-3-540-24670-1_33
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/978-3-540-88688-4_43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052807962
142 https://doi.org/10.1007/978-3-540-88688-4_43
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s11263-005-6642-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001468231
145 https://doi.org/10.1007/s11263-005-6642-x
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s11263-010-0415-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051801565
148 https://doi.org/10.1007/s11263-010-0415-x
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.cviu.2005.09.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004784969
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1109/cvpr.2004.314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093364701
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/cvpr.2006.91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093699646
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1109/cvpr.2007.383011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093495009
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1109/cvpr.2007.383098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094188258
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1109/cvpr.2008.4587440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093603275
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1109/cvpr.2008.4587633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093176609
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/cvpr.2009.5206581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093639534
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/cvpr.2009.5206594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094500840
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1109/cvpr.2009.5206848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095689025
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1109/cvpr.2010.5539868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093759710
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1109/cvpr.2010.5540063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094461024
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1109/cvpr.2010.5540064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093507611
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1109/cvpr.2010.5540080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094242240
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1109/cvpr.2010.5540226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094653828
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1109/cvpr.2011.5995357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093553344
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1109/cvpr.2011.5995432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093481891
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1109/cvpr.2011.5995530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093473548
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1109/cvpr.2011.5995597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095672986
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1109/cvpr.2011.5995720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093267704
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1109/cvpr.2012.6247721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093882752
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1109/cvpr.2012.6248043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094742433
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1109/cvpr.2012.6248055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094485704
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1109/iccv.2001.937505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095383001
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1109/iccv.2005.148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095125400
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1109/iccv.2005.37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093770091
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1109/iccv.2005.63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093988741
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1109/iccv.2007.4408973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094197282
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1109/iccv.2009.5459307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093184768
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1109/iccv.2011.6126239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094397305
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1109/iccv.2011.6126391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095573215
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1109/iccv.2011.6126546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095266833
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1145/1186562.1015720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022236987
215 rdf:type schema:CreativeWork
216 https://www.grid.ac/institutes/grid.4305.2 schema:alternateName University of Edinburgh
217 schema:name University of Edinburgh, UK
218 rdf:type schema:Organization
219 https://www.grid.ac/institutes/grid.5801.c schema:alternateName Swiss Federal Institute of Technology in Zurich
220 schema:name ETH Zürich, Switzerland
221 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...