Multibiometric System Using Distance Regularized Level Set Method and Particle Swarm Optimization View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2012

AUTHORS

Kaushik Roy , Mohamed S. Kamel

ABSTRACT

This paper presents a multibiometric system that integrates the iris, palmprint, and fingerprint features based on the fusion at feature level. The novelty of this research effort is that we propose a feature subset selection scheme based on Particle Swarm Optimization (PSO) with a new fitness function that minimizes the Recognition Error (RR), False Accept Rate (FAR), and Feature Subset Size (FSS). Furthermore, we apply a Distance Regularized Level Set (DRLS)-based iris segmentation procedure, which maintains the regularity of the level set function intrinsically during the curve evolution process and increases the numerical accuracy substantially. The proposed iris localization scheme is robust against poor localization and weak iris/sclera boundaries. Experimental results indicate that the proposed approach increases biometric recognition accuracies compared to that produced by single modal biometrics. More... »

PAGES

590-599

References to SciGraph publications

Book

TITLE

Computer Vision and Graphics

ISBN

978-3-642-33563-1
978-3-642-33564-8

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-33564-8_71

DOI

http://dx.doi.org/10.1007/978-3-642-33564-8_71

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026394989


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Centre for Pattern Analysis and Machine Intelligence, University of Waterloo, ON, Canada, N2L3G1"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roy", 
        "givenName": "Kaushik", 
        "id": "sg:person.010511344303.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010511344303.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Centre for Pattern Analysis and Machine Intelligence, University of Waterloo, ON, Canada, N2L3G1"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kamel", 
        "givenName": "Mohamed S.", 
        "id": "sg:person.01133760566.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133760566.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-01793-3_97", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020690964", 
          "https://doi.org/10.1007/978-3-642-01793-3_97"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-01793-3_97", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020690964", 
          "https://doi.org/10.1007/978-3-642-01793-3_97"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2011.02.155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026072917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781584888796.ch16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033032755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.optlaseng.2010.09.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035684427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2010.2069690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061642632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5860/choice.27-0936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073293339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/btas.2009.5339039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093518923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icnn.1995.488968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093669333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2010.5653680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094368314"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "This paper presents a multibiometric system that integrates the iris, palmprint, and fingerprint features based on the fusion at feature level. The novelty of this research effort is that we propose a feature subset selection scheme based on Particle Swarm Optimization (PSO) with a new fitness function that minimizes the Recognition Error (RR), False Accept Rate (FAR), and Feature Subset Size (FSS). Furthermore, we apply a Distance Regularized Level Set (DRLS)-based iris segmentation procedure, which maintains the regularity of the level set function intrinsically during the curve evolution process and increases the numerical accuracy substantially. The proposed iris localization scheme is robust against poor localization and weak iris/sclera boundaries. Experimental results indicate that the proposed approach increases biometric recognition accuracies compared to that produced by single modal biometrics.", 
    "editor": [
      {
        "familyName": "Bolc", 
        "givenName": "Leonard", 
        "type": "Person"
      }, 
      {
        "familyName": "Tadeusiewicz", 
        "givenName": "Ryszard", 
        "type": "Person"
      }, 
      {
        "familyName": "Chmielewski", 
        "givenName": "Leszek J.", 
        "type": "Person"
      }, 
      {
        "familyName": "Wojciechowski", 
        "givenName": "Konrad", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-33564-8_71", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-33563-1", 
        "978-3-642-33564-8"
      ], 
      "name": "Computer Vision and Graphics", 
      "type": "Book"
    }, 
    "name": "Multibiometric System Using Distance Regularized Level Set Method and Particle Swarm Optimization", 
    "pagination": "590-599", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-33564-8_71"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7dbea36ffdd2996adb47b4bf4c323f047115662d5bbd50c11b25b9f0ff6fc994"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026394989"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-33564-8_71", 
      "https://app.dimensions.ai/details/publication/pub.1026394989"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T18:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000259.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-33564-8_71"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33564-8_71'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33564-8_71'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33564-8_71'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33564-8_71'


 

This table displays all metadata directly associated to this object as RDF triples.

115 TRIPLES      23 PREDICATES      36 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-33564-8_71 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nd4c00c450207456c91a59e1fa74d6f9e
4 schema:citation sg:pub.10.1007/978-3-642-01793-3_97
5 https://doi.org/10.1016/j.eswa.2011.02.155
6 https://doi.org/10.1016/j.optlaseng.2010.09.011
7 https://doi.org/10.1109/btas.2009.5339039
8 https://doi.org/10.1109/icip.2010.5653680
9 https://doi.org/10.1109/icnn.1995.488968
10 https://doi.org/10.1109/tip.2010.2069690
11 https://doi.org/10.1201/9781584888796.ch16
12 https://doi.org/10.5860/choice.27-0936
13 schema:datePublished 2012
14 schema:datePublishedReg 2012-01-01
15 schema:description This paper presents a multibiometric system that integrates the iris, palmprint, and fingerprint features based on the fusion at feature level. The novelty of this research effort is that we propose a feature subset selection scheme based on Particle Swarm Optimization (PSO) with a new fitness function that minimizes the Recognition Error (RR), False Accept Rate (FAR), and Feature Subset Size (FSS). Furthermore, we apply a Distance Regularized Level Set (DRLS)-based iris segmentation procedure, which maintains the regularity of the level set function intrinsically during the curve evolution process and increases the numerical accuracy substantially. The proposed iris localization scheme is robust against poor localization and weak iris/sclera boundaries. Experimental results indicate that the proposed approach increases biometric recognition accuracies compared to that produced by single modal biometrics.
16 schema:editor Nf9c4a7b9561c4ecb9446bfb49ad7d6a7
17 schema:genre chapter
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf Ne3059df0c4e84f4daef605b68a4816c4
21 schema:name Multibiometric System Using Distance Regularized Level Set Method and Particle Swarm Optimization
22 schema:pagination 590-599
23 schema:productId N24720e1af80445a398d403bfea9a7753
24 N738fe25394c342c8a9786bcc22314cb6
25 Nf7b6d13ff81845bd851de330ae6f54d6
26 schema:publisher N3e06d17ce09b4b20bc73ee7de4d52dc4
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026394989
28 https://doi.org/10.1007/978-3-642-33564-8_71
29 schema:sdDatePublished 2019-04-15T18:11
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher Nacc5b1a2291c457fbb4b7b511d46faf4
32 schema:url http://link.springer.com/10.1007/978-3-642-33564-8_71
33 sgo:license sg:explorer/license/
34 sgo:sdDataset chapters
35 rdf:type schema:Chapter
36 N044b835a65e444d78dbab0074693832a rdf:first sg:person.01133760566.26
37 rdf:rest rdf:nil
38 N2109ce5064704c868300e5bb54e1776a schema:familyName Tadeusiewicz
39 schema:givenName Ryszard
40 rdf:type schema:Person
41 N24720e1af80445a398d403bfea9a7753 schema:name readcube_id
42 schema:value 7dbea36ffdd2996adb47b4bf4c323f047115662d5bbd50c11b25b9f0ff6fc994
43 rdf:type schema:PropertyValue
44 N3e06d17ce09b4b20bc73ee7de4d52dc4 schema:location Berlin, Heidelberg
45 schema:name Springer Berlin Heidelberg
46 rdf:type schema:Organisation
47 N442d29c1a27d44b6b9835d051ba98746 rdf:first N2109ce5064704c868300e5bb54e1776a
48 rdf:rest N5b1e043a8f0f4e7daf57a29e5e86fa92
49 N5b1e043a8f0f4e7daf57a29e5e86fa92 rdf:first Nbf79f19bfe1f483e8e543de324aff4a3
50 rdf:rest Nbf7d7ae9456f41c6a445bfe1bb1aa67c
51 N738fe25394c342c8a9786bcc22314cb6 schema:name dimensions_id
52 schema:value pub.1026394989
53 rdf:type schema:PropertyValue
54 N8c7b6690aacc4d58bb291d789d42642e schema:familyName Wojciechowski
55 schema:givenName Konrad
56 rdf:type schema:Person
57 Nacc5b1a2291c457fbb4b7b511d46faf4 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 Nbf79f19bfe1f483e8e543de324aff4a3 schema:familyName Chmielewski
60 schema:givenName Leszek J.
61 rdf:type schema:Person
62 Nbf7d7ae9456f41c6a445bfe1bb1aa67c rdf:first N8c7b6690aacc4d58bb291d789d42642e
63 rdf:rest rdf:nil
64 Nd4c00c450207456c91a59e1fa74d6f9e rdf:first sg:person.010511344303.36
65 rdf:rest N044b835a65e444d78dbab0074693832a
66 Ne3059df0c4e84f4daef605b68a4816c4 schema:isbn 978-3-642-33563-1
67 978-3-642-33564-8
68 schema:name Computer Vision and Graphics
69 rdf:type schema:Book
70 Nf7b6d13ff81845bd851de330ae6f54d6 schema:name doi
71 schema:value 10.1007/978-3-642-33564-8_71
72 rdf:type schema:PropertyValue
73 Nf7b9bd72d84c4c1893b4e77a9df624af schema:familyName Bolc
74 schema:givenName Leonard
75 rdf:type schema:Person
76 Nf9c4a7b9561c4ecb9446bfb49ad7d6a7 rdf:first Nf7b9bd72d84c4c1893b4e77a9df624af
77 rdf:rest N442d29c1a27d44b6b9835d051ba98746
78 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
79 schema:name Information and Computing Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
82 schema:name Artificial Intelligence and Image Processing
83 rdf:type schema:DefinedTerm
84 sg:person.010511344303.36 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
85 schema:familyName Roy
86 schema:givenName Kaushik
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010511344303.36
88 rdf:type schema:Person
89 sg:person.01133760566.26 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
90 schema:familyName Kamel
91 schema:givenName Mohamed S.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133760566.26
93 rdf:type schema:Person
94 sg:pub.10.1007/978-3-642-01793-3_97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020690964
95 https://doi.org/10.1007/978-3-642-01793-3_97
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/j.eswa.2011.02.155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026072917
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/j.optlaseng.2010.09.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035684427
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1109/btas.2009.5339039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093518923
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1109/icip.2010.5653680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094368314
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1109/icnn.1995.488968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093669333
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1109/tip.2010.2069690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061642632
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1201/9781584888796.ch16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033032755
110 rdf:type schema:CreativeWork
111 https://doi.org/10.5860/choice.27-0936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073293339
112 rdf:type schema:CreativeWork
113 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
114 schema:name Centre for Pattern Analysis and Machine Intelligence, University of Waterloo, ON, Canada, N2L3G1
115 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...