Declarative Modeling for Machine Learning and Data Mining View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2012

AUTHORS

Luc De Raedt

ABSTRACT

Despite the popularity of machine learning and data mining today, it remains challenging to develop applications and software that incorporates machine learning or data mining techniques. This is because machine learning and data mining have focussed on developing high-performance algorithms for solving particular tasks rather than on developing general principles and techniques. I propose to alleviate these problems by applying the constraint programming methodology to machine learning and data mining and to specify machine learning and data mining problems as constraint satisfaction and optimization problems. What is essential is that the user be provided with a way to declaratively specify what the machine learning or data mining problem is rather than having to outline how that solution needs to be computed. This corresponds to a model + solver-based approach to machine learning and data mining, in which the user specifies the problem in a high level modeling language and the system automatically transforms such models into a format that can be used by a solver to efficiently generate a solution. This should be much easier for the user than having to implement or adapt an algorithm that computes a particular solution to a specific problem. Throughout the talk, I shall use illustrations from our work on constraint programming for itemset mining and probabilistic programming. More... »

PAGES

1-1

Book

TITLE

Discovery Science

ISBN

978-3-642-33491-7
978-3-642-33492-4

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-33492-4_1

DOI

http://dx.doi.org/10.1007/978-3-642-33492-4_1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001058692


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "KU Leuven", 
          "id": "https://www.grid.ac/institutes/grid.5596.f", 
          "name": [
            "Department of Computer Science, Katholieke Universiteit Leuven, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "De Raedt", 
        "givenName": "Luc", 
        "id": "sg:person.015333627665.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015333627665.77"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "Despite the popularity of machine learning and data mining today, it remains challenging to develop applications and software that incorporates machine learning or data mining techniques. This is because machine learning and data mining have focussed on developing high-performance algorithms for solving particular tasks rather than on developing general principles and techniques. I propose to alleviate these problems by applying the constraint programming methodology to machine learning and data mining and to specify machine learning and data mining problems as constraint satisfaction and optimization problems. What is essential is that the user be provided with a way to declaratively specify what the machine learning or data mining problem is rather than having to outline how that solution needs to be computed. This corresponds to a model + solver-based approach to machine learning and data mining, in which the user specifies the problem in a high level modeling language and the system automatically transforms such models into a format that can be used by a solver to efficiently generate a solution. This should be much easier for the user than having to implement or adapt an algorithm that computes a particular solution to a specific problem. Throughout the talk, I shall use illustrations from our work on constraint programming for itemset mining and probabilistic programming.", 
    "editor": [
      {
        "familyName": "Ganascia", 
        "givenName": "Jean-Gabriel", 
        "type": "Person"
      }, 
      {
        "familyName": "Lenca", 
        "givenName": "Philippe", 
        "type": "Person"
      }, 
      {
        "familyName": "Petit", 
        "givenName": "Jean-Marc", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-33492-4_1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-33491-7", 
        "978-3-642-33492-4"
      ], 
      "name": "Discovery Science", 
      "type": "Book"
    }, 
    "name": "Declarative Modeling for Machine Learning and Data Mining", 
    "pagination": "1-1", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-33492-4_1"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "050b39ec8ac6b17ab825c63d33b88e6b2f76b73fd0234113940e0ea15a6bde0a"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001058692"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-33492-4_1", 
      "https://app.dimensions.ai/details/publication/pub.1001058692"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T12:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000001.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-33492-4_1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33492-4_1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33492-4_1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33492-4_1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33492-4_1'


 

This table displays all metadata directly associated to this object as RDF triples.

75 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-33492-4_1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N81b40402b7ee4d60b5cb04951235be1d
4 schema:datePublished 2012
5 schema:datePublishedReg 2012-01-01
6 schema:description Despite the popularity of machine learning and data mining today, it remains challenging to develop applications and software that incorporates machine learning or data mining techniques. This is because machine learning and data mining have focussed on developing high-performance algorithms for solving particular tasks rather than on developing general principles and techniques. I propose to alleviate these problems by applying the constraint programming methodology to machine learning and data mining and to specify machine learning and data mining problems as constraint satisfaction and optimization problems. What is essential is that the user be provided with a way to declaratively specify what the machine learning or data mining problem is rather than having to outline how that solution needs to be computed. This corresponds to a model + solver-based approach to machine learning and data mining, in which the user specifies the problem in a high level modeling language and the system automatically transforms such models into a format that can be used by a solver to efficiently generate a solution. This should be much easier for the user than having to implement or adapt an algorithm that computes a particular solution to a specific problem. Throughout the talk, I shall use illustrations from our work on constraint programming for itemset mining and probabilistic programming.
7 schema:editor N712e55c537ab41e3b1d46857b04c1b2e
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N726074ffbe8647d1b055ff1788150dc7
12 schema:name Declarative Modeling for Machine Learning and Data Mining
13 schema:pagination 1-1
14 schema:productId N058585689bf4489a9ccda68c24b2cd57
15 N59e94e939b5446d3a55df7e71794a9ec
16 Na7c53a05ddd14943b23b10464508b75b
17 schema:publisher N7a6aa267aca84d9894e07d68d3476573
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001058692
19 https://doi.org/10.1007/978-3-642-33492-4_1
20 schema:sdDatePublished 2019-04-15T12:14
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N8f163fc8b2ca4aa8a24994d021c0e954
23 schema:url http://link.springer.com/10.1007/978-3-642-33492-4_1
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N058585689bf4489a9ccda68c24b2cd57 schema:name readcube_id
28 schema:value 050b39ec8ac6b17ab825c63d33b88e6b2f76b73fd0234113940e0ea15a6bde0a
29 rdf:type schema:PropertyValue
30 N087444df79ac4e0bb8d75624f0aac9d0 schema:familyName Ganascia
31 schema:givenName Jean-Gabriel
32 rdf:type schema:Person
33 N4b754333144d40ff845fbd70436527e0 schema:familyName Petit
34 schema:givenName Jean-Marc
35 rdf:type schema:Person
36 N59e94e939b5446d3a55df7e71794a9ec schema:name doi
37 schema:value 10.1007/978-3-642-33492-4_1
38 rdf:type schema:PropertyValue
39 N712e55c537ab41e3b1d46857b04c1b2e rdf:first N087444df79ac4e0bb8d75624f0aac9d0
40 rdf:rest Nde63b9e87aaa43a7bd3c2f9039f1f963
41 N726074ffbe8647d1b055ff1788150dc7 schema:isbn 978-3-642-33491-7
42 978-3-642-33492-4
43 schema:name Discovery Science
44 rdf:type schema:Book
45 N7a6aa267aca84d9894e07d68d3476573 schema:location Berlin, Heidelberg
46 schema:name Springer Berlin Heidelberg
47 rdf:type schema:Organisation
48 N81b40402b7ee4d60b5cb04951235be1d rdf:first sg:person.015333627665.77
49 rdf:rest rdf:nil
50 N8f163fc8b2ca4aa8a24994d021c0e954 schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 Na7c53a05ddd14943b23b10464508b75b schema:name dimensions_id
53 schema:value pub.1001058692
54 rdf:type schema:PropertyValue
55 Nd72401e8346b45d8be5f84b6fa321d18 schema:familyName Lenca
56 schema:givenName Philippe
57 rdf:type schema:Person
58 Nde63b9e87aaa43a7bd3c2f9039f1f963 rdf:first Nd72401e8346b45d8be5f84b6fa321d18
59 rdf:rest Neb2bc74a46f949c3bd1d339f76ffea4f
60 Neb2bc74a46f949c3bd1d339f76ffea4f rdf:first N4b754333144d40ff845fbd70436527e0
61 rdf:rest rdf:nil
62 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
63 schema:name Information and Computing Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
66 schema:name Artificial Intelligence and Image Processing
67 rdf:type schema:DefinedTerm
68 sg:person.015333627665.77 schema:affiliation https://www.grid.ac/institutes/grid.5596.f
69 schema:familyName De Raedt
70 schema:givenName Luc
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015333627665.77
72 rdf:type schema:Person
73 https://www.grid.ac/institutes/grid.5596.f schema:alternateName KU Leuven
74 schema:name Department of Computer Science, Katholieke Universiteit Leuven, Belgium
75 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...