Declarative Modeling for Machine Learning and Data Mining View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2012

AUTHORS

Luc De Raedt

ABSTRACT

Despite the popularity of machine learning and data mining today, it remains challenging to develop applications and software that incorporates machine learning or data mining techniques. This is because machine learning and data mining have focussed on developing high-performance algorithms for solving particular tasks rather than on developing general principles and techniques. I propose to alleviate these problems by applying the constraint programming methodology to machine learning and data mining and to specify machine learning and data mining problems as constraint satisfaction and optimization problems. What is essential is that the user be provided with a way to declaratively specify what the machine learning or data mining problem is rather than having to outline how that solution needs to be computed. This corresponds to a model + solver-based approach to machine learning and data mining, in which the user specifies the problem in a high level modeling language and the system automatically transforms such models into a format that can be used by a solver to efficiently generate a solution. This should be much easier for the user than having to implement or adapt an algorithm that computes a particular solution to a specific problem. Throughout the talk, I shall use illustrations from our work on constraint programming for itemset mining and probabilistic programming. More... »

PAGES

2-3

Book

TITLE

Machine Learning and Knowledge Discovery in Databases

ISBN

978-3-642-33459-7
978-3-642-33460-3

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-33460-3_2

DOI

http://dx.doi.org/10.1007/978-3-642-33460-3_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013430158


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "KU Leuven", 
          "id": "https://www.grid.ac/institutes/grid.5596.f", 
          "name": [
            "University of Leuven, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "De Raedt", 
        "givenName": "Luc", 
        "id": "sg:person.015333627665.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015333627665.77"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "Despite the popularity of machine learning and data mining today, it remains challenging to develop applications and software that incorporates machine learning or data mining techniques. This is because machine learning and data mining have focussed on developing high-performance algorithms for solving particular tasks rather than on developing general principles and techniques. I propose to alleviate these problems by applying the constraint programming methodology to machine learning and data mining and to specify machine learning and data mining problems as constraint satisfaction and optimization problems. What is essential is that the user be provided with a way to declaratively specify what the machine learning or data mining problem is rather than having to outline how that solution needs to be computed. This corresponds to a model + solver-based approach to machine learning and data mining, in which the user specifies the problem in a high level modeling language and the system automatically transforms such models into a format that can be used by a solver to efficiently generate a solution. This should be much easier for the user than having to implement or adapt an algorithm that computes a particular solution to a specific problem. Throughout the talk, I shall use illustrations from our work on constraint programming for itemset mining and probabilistic programming.", 
    "editor": [
      {
        "familyName": "Flach", 
        "givenName": "Peter A.", 
        "type": "Person"
      }, 
      {
        "familyName": "De Bie", 
        "givenName": "Tijl", 
        "type": "Person"
      }, 
      {
        "familyName": "Cristianini", 
        "givenName": "Nello", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-33460-3_2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-33459-7", 
        "978-3-642-33460-3"
      ], 
      "name": "Machine Learning and Knowledge Discovery in Databases", 
      "type": "Book"
    }, 
    "name": "Declarative Modeling for Machine Learning and Data Mining", 
    "pagination": "2-3", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-33460-3_2"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3ffa63d14b8e82ebb41ba182fea3ceb79ef936601e91d31c5b3811fcad023aa9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013430158"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-33460-3_2", 
      "https://app.dimensions.ai/details/publication/pub.1013430158"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T15:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000023.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-33460-3_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33460-3_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33460-3_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33460-3_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33460-3_2'


 

This table displays all metadata directly associated to this object as RDF triples.

75 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-33460-3_2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ne110ac006f404f84a8d3e4f642614479
4 schema:datePublished 2012
5 schema:datePublishedReg 2012-01-01
6 schema:description Despite the popularity of machine learning and data mining today, it remains challenging to develop applications and software that incorporates machine learning or data mining techniques. This is because machine learning and data mining have focussed on developing high-performance algorithms for solving particular tasks rather than on developing general principles and techniques. I propose to alleviate these problems by applying the constraint programming methodology to machine learning and data mining and to specify machine learning and data mining problems as constraint satisfaction and optimization problems. What is essential is that the user be provided with a way to declaratively specify what the machine learning or data mining problem is rather than having to outline how that solution needs to be computed. This corresponds to a model + solver-based approach to machine learning and data mining, in which the user specifies the problem in a high level modeling language and the system automatically transforms such models into a format that can be used by a solver to efficiently generate a solution. This should be much easier for the user than having to implement or adapt an algorithm that computes a particular solution to a specific problem. Throughout the talk, I shall use illustrations from our work on constraint programming for itemset mining and probabilistic programming.
7 schema:editor N26e2ecfd9e0041cd930d1beaf42d5c65
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N8e7acc5d4a444213ad1931cfb421ce12
12 schema:name Declarative Modeling for Machine Learning and Data Mining
13 schema:pagination 2-3
14 schema:productId N1fd014bd021f4d00a9c10db2656cee99
15 Ndcaadd6760044bc483a418b4d7c7508f
16 Ne6d9f8f814cf47db9ad38302e2ead9a4
17 schema:publisher N24d17e5d7a7c4893a0bc847592ece6b1
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013430158
19 https://doi.org/10.1007/978-3-642-33460-3_2
20 schema:sdDatePublished 2019-04-15T15:06
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Nb3d226548546437196f546d1f9a91b5a
23 schema:url http://link.springer.com/10.1007/978-3-642-33460-3_2
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N1fd014bd021f4d00a9c10db2656cee99 schema:name doi
28 schema:value 10.1007/978-3-642-33460-3_2
29 rdf:type schema:PropertyValue
30 N24d17e5d7a7c4893a0bc847592ece6b1 schema:location Berlin, Heidelberg
31 schema:name Springer Berlin Heidelberg
32 rdf:type schema:Organisation
33 N26e2ecfd9e0041cd930d1beaf42d5c65 rdf:first N5e58211578dc43b5a3831f24d40e4472
34 rdf:rest N50df917335114ec48906b957c9abd791
35 N3f8254e39f004e48a4c4a9716ead66e4 schema:familyName Cristianini
36 schema:givenName Nello
37 rdf:type schema:Person
38 N428d26880d064bc69f2a6af35db8677c rdf:first N3f8254e39f004e48a4c4a9716ead66e4
39 rdf:rest rdf:nil
40 N50df917335114ec48906b957c9abd791 rdf:first N6910631e84a5495087628fbb52d2750d
41 rdf:rest N428d26880d064bc69f2a6af35db8677c
42 N5e58211578dc43b5a3831f24d40e4472 schema:familyName Flach
43 schema:givenName Peter A.
44 rdf:type schema:Person
45 N6910631e84a5495087628fbb52d2750d schema:familyName De Bie
46 schema:givenName Tijl
47 rdf:type schema:Person
48 N8e7acc5d4a444213ad1931cfb421ce12 schema:isbn 978-3-642-33459-7
49 978-3-642-33460-3
50 schema:name Machine Learning and Knowledge Discovery in Databases
51 rdf:type schema:Book
52 Nb3d226548546437196f546d1f9a91b5a schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 Ndcaadd6760044bc483a418b4d7c7508f schema:name readcube_id
55 schema:value 3ffa63d14b8e82ebb41ba182fea3ceb79ef936601e91d31c5b3811fcad023aa9
56 rdf:type schema:PropertyValue
57 Ne110ac006f404f84a8d3e4f642614479 rdf:first sg:person.015333627665.77
58 rdf:rest rdf:nil
59 Ne6d9f8f814cf47db9ad38302e2ead9a4 schema:name dimensions_id
60 schema:value pub.1013430158
61 rdf:type schema:PropertyValue
62 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
63 schema:name Information and Computing Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
66 schema:name Artificial Intelligence and Image Processing
67 rdf:type schema:DefinedTerm
68 sg:person.015333627665.77 schema:affiliation https://www.grid.ac/institutes/grid.5596.f
69 schema:familyName De Raedt
70 schema:givenName Luc
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015333627665.77
72 rdf:type schema:Person
73 https://www.grid.ac/institutes/grid.5596.f schema:alternateName KU Leuven
74 schema:name University of Leuven, Belgium
75 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...