Declarative Modeling for Machine Learning and Data Mining View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2012

AUTHORS

Luc De Raedt

ABSTRACT

Despite the popularity of machine learning and data mining today, it remains challenging to develop applications and software that incorporates machine learning or data mining techniques. This is because machine learning and data mining have focussed on developing high-performance algorithms for solving particular tasks rather than on developing general principles and techniques. I propose to alleviate these problems by applying the constraint programming methodology to machine learning and data mining and to specify machine learning and data mining problems as constraint satisfaction and optimization problems. What is essential is that the user be provided with a way to declaratively specify what the machine learning or data mining problem is rather than having to outline how that solution needs to be computed. This corresponds to a model + solver-based approach to machine learning and data mining, in which the user specifies the problem in a high level modeling language and the system automatically transforms such models into a format that can be used by a solver to efficiently generate a solution. This should be much easier for the user than having to implement or adapt an algorithm that computes a particular solution to a specific problem. Throughout the talk, I shall use illustrations from our work on constraint programming for itemset mining and probabilistic programming. More... »

PAGES

2-3

Book

TITLE

Machine Learning and Knowledge Discovery in Databases

ISBN

978-3-642-33459-7
978-3-642-33460-3

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-33460-3_2

DOI

http://dx.doi.org/10.1007/978-3-642-33460-3_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013430158


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "KU Leuven", 
          "id": "https://www.grid.ac/institutes/grid.5596.f", 
          "name": [
            "University of Leuven, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "De Raedt", 
        "givenName": "Luc", 
        "id": "sg:person.015333627665.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015333627665.77"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "Despite the popularity of machine learning and data mining today, it remains challenging to develop applications and software that incorporates machine learning or data mining techniques. This is because machine learning and data mining have focussed on developing high-performance algorithms for solving particular tasks rather than on developing general principles and techniques. I propose to alleviate these problems by applying the constraint programming methodology to machine learning and data mining and to specify machine learning and data mining problems as constraint satisfaction and optimization problems. What is essential is that the user be provided with a way to declaratively specify what the machine learning or data mining problem is rather than having to outline how that solution needs to be computed. This corresponds to a model + solver-based approach to machine learning and data mining, in which the user specifies the problem in a high level modeling language and the system automatically transforms such models into a format that can be used by a solver to efficiently generate a solution. This should be much easier for the user than having to implement or adapt an algorithm that computes a particular solution to a specific problem. Throughout the talk, I shall use illustrations from our work on constraint programming for itemset mining and probabilistic programming.", 
    "editor": [
      {
        "familyName": "Flach", 
        "givenName": "Peter A.", 
        "type": "Person"
      }, 
      {
        "familyName": "De Bie", 
        "givenName": "Tijl", 
        "type": "Person"
      }, 
      {
        "familyName": "Cristianini", 
        "givenName": "Nello", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-33460-3_2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-33459-7", 
        "978-3-642-33460-3"
      ], 
      "name": "Machine Learning and Knowledge Discovery in Databases", 
      "type": "Book"
    }, 
    "name": "Declarative Modeling for Machine Learning and Data Mining", 
    "pagination": "2-3", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-33460-3_2"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3ffa63d14b8e82ebb41ba182fea3ceb79ef936601e91d31c5b3811fcad023aa9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013430158"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-33460-3_2", 
      "https://app.dimensions.ai/details/publication/pub.1013430158"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T15:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000023.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-33460-3_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33460-3_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33460-3_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33460-3_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33460-3_2'


 

This table displays all metadata directly associated to this object as RDF triples.

75 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-33460-3_2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N557605ce21624187b451f7db2224242b
4 schema:datePublished 2012
5 schema:datePublishedReg 2012-01-01
6 schema:description Despite the popularity of machine learning and data mining today, it remains challenging to develop applications and software that incorporates machine learning or data mining techniques. This is because machine learning and data mining have focussed on developing high-performance algorithms for solving particular tasks rather than on developing general principles and techniques. I propose to alleviate these problems by applying the constraint programming methodology to machine learning and data mining and to specify machine learning and data mining problems as constraint satisfaction and optimization problems. What is essential is that the user be provided with a way to declaratively specify what the machine learning or data mining problem is rather than having to outline how that solution needs to be computed. This corresponds to a model + solver-based approach to machine learning and data mining, in which the user specifies the problem in a high level modeling language and the system automatically transforms such models into a format that can be used by a solver to efficiently generate a solution. This should be much easier for the user than having to implement or adapt an algorithm that computes a particular solution to a specific problem. Throughout the talk, I shall use illustrations from our work on constraint programming for itemset mining and probabilistic programming.
7 schema:editor N417064207754455c83d7ed3cbbccbc0b
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf Nded5da8d1468479483ba015e41091003
12 schema:name Declarative Modeling for Machine Learning and Data Mining
13 schema:pagination 2-3
14 schema:productId N3791e36a0c6e4f16afaba574055b89da
15 N7e05dcfd277243bc9ff05237d59ce958
16 Necca6a18f4dc4ba8b9f488570629a6ae
17 schema:publisher Nb006fd39365d461cb815c0d25dae8b6b
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013430158
19 https://doi.org/10.1007/978-3-642-33460-3_2
20 schema:sdDatePublished 2019-04-15T15:06
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N86527b4d5fdb4f9cac1ace193903248a
23 schema:url http://link.springer.com/10.1007/978-3-642-33460-3_2
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N20e05e66ada94d7f976d941488577a5c rdf:first N3d5582e353a64fb8933da4c399aec046
28 rdf:rest N8fd258fc8f9a4de89628325630414337
29 N3791e36a0c6e4f16afaba574055b89da schema:name readcube_id
30 schema:value 3ffa63d14b8e82ebb41ba182fea3ceb79ef936601e91d31c5b3811fcad023aa9
31 rdf:type schema:PropertyValue
32 N3d5582e353a64fb8933da4c399aec046 schema:familyName De Bie
33 schema:givenName Tijl
34 rdf:type schema:Person
35 N417064207754455c83d7ed3cbbccbc0b rdf:first Nf50293bb7a2a4cff949c903c56de44ec
36 rdf:rest N20e05e66ada94d7f976d941488577a5c
37 N557605ce21624187b451f7db2224242b rdf:first sg:person.015333627665.77
38 rdf:rest rdf:nil
39 N7e05dcfd277243bc9ff05237d59ce958 schema:name doi
40 schema:value 10.1007/978-3-642-33460-3_2
41 rdf:type schema:PropertyValue
42 N86527b4d5fdb4f9cac1ace193903248a schema:name Springer Nature - SN SciGraph project
43 rdf:type schema:Organization
44 N8fd258fc8f9a4de89628325630414337 rdf:first Na91e40348f8845fcb3c650bfc885bc92
45 rdf:rest rdf:nil
46 Na91e40348f8845fcb3c650bfc885bc92 schema:familyName Cristianini
47 schema:givenName Nello
48 rdf:type schema:Person
49 Nb006fd39365d461cb815c0d25dae8b6b schema:location Berlin, Heidelberg
50 schema:name Springer Berlin Heidelberg
51 rdf:type schema:Organisation
52 Nded5da8d1468479483ba015e41091003 schema:isbn 978-3-642-33459-7
53 978-3-642-33460-3
54 schema:name Machine Learning and Knowledge Discovery in Databases
55 rdf:type schema:Book
56 Necca6a18f4dc4ba8b9f488570629a6ae schema:name dimensions_id
57 schema:value pub.1013430158
58 rdf:type schema:PropertyValue
59 Nf50293bb7a2a4cff949c903c56de44ec schema:familyName Flach
60 schema:givenName Peter A.
61 rdf:type schema:Person
62 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
63 schema:name Information and Computing Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
66 schema:name Artificial Intelligence and Image Processing
67 rdf:type schema:DefinedTerm
68 sg:person.015333627665.77 schema:affiliation https://www.grid.ac/institutes/grid.5596.f
69 schema:familyName De Raedt
70 schema:givenName Luc
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015333627665.77
72 rdf:type schema:Person
73 https://www.grid.ac/institutes/grid.5596.f schema:alternateName KU Leuven
74 schema:name University of Leuven, Belgium
75 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...