Detection of Vertebral Body Fractures Based on Cortical Shell Unwrapping View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2012

AUTHORS

Jianhua Yao , Joseph E. Burns , Hector Munoz , Ronald M. Summers

ABSTRACT

Assessment of trauma patients with multiple injuries can be one of the most clinically challenging situations dealt with by the radiologist. We propose a fully automated method to detect acute vertebral body fractures on trauma CT studies. The spine is first segmented and partitioned into vertebrae. Then the cortical shell of the vertebral body is extracted using deformable dual-surface models. The extracted cortical shell is unwrapped onto a 2D map effectively converting a complex 3D fracture detection problem into a pattern recognition problem of fracture lines on a 2D plane. Twenty-eight features are computed for each fracture line and sent to a committee of support vector machines for classification. The system was tested on 18 trauma CT datasets and achieved 95.3% sensitivity and 1.7 false positives per case by leave-one-out cross validation. More... »

PAGES

509-16

References to SciGraph publications

  • 2008. Support Vector Machines in ENCYCLOPEDIA OF ALGORITHMS
  • 2007. Hierarchical Classifiers for Detection of Fractures in X-Ray Images in COMPUTER ANALYSIS OF IMAGES AND PATTERNS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-642-33454-2_63

    DOI

    http://dx.doi.org/10.1007/978-3-642-33454-2_63

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1031708973

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/23286169


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adolescent", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged, 80 and over", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pattern Recognition, Automated", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Radiographic Image Enhancement", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Radiographic Image Interpretation, Computer-Assisted", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reproducibility of Results", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sensitivity and Specificity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Spinal Fractures", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tomography, X-Ray Computed", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Young Adult", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National Institutes of Health Clinical Center", 
              "id": "https://www.grid.ac/institutes/grid.410305.3", 
              "name": [
                "Radiology and Imaging Sciences Department, Clinical Center, The National Institutes of Health, Bethesda, MD\u00a020892, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yao", 
            "givenName": "Jianhua", 
            "id": "sg:person.012366760067.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012366760067.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Radiological Sciences, University of California, Irvine School of Medicine, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Burns", 
            "givenName": "Joseph E.", 
            "id": "sg:person.01143237134.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143237134.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institutes of Health Clinical Center", 
              "id": "https://www.grid.ac/institutes/grid.410305.3", 
              "name": [
                "Radiology and Imaging Sciences Department, Clinical Center, The National Institutes of Health, Bethesda, MD\u00a020892, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Munoz", 
            "givenName": "Hector", 
            "id": "sg:person.01074602356.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074602356.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institutes of Health Clinical Center", 
              "id": "https://www.grid.ac/institutes/grid.410305.3", 
              "name": [
                "Radiology and Imaging Sciences Department, Clinical Center, The National Institutes of Health, Bethesda, MD\u00a020892, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Summers", 
            "givenName": "Ronald M.", 
            "id": "sg:person.011331054577.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331054577.30"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.ejrad.2007.12.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029584926"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/357994.358023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030198768"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.911703", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032299474"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-30162-4_415", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035382537", 
              "https://doi.org/10.1007/978-0-387-30162-4_415"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-74272-2_119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035697862", 
              "https://doi.org/10.1007/978-3-540-74272-2_119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-74272-2_119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035697862", 
              "https://doi.org/10.1007/978-3-540-74272-2_119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.878055", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037276339"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2007.59", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061743350"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2106/jbjs.h.01304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068901124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2106/jbjs.h.01304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068901124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2106/jbjs.h.01304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068901124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/isbi.2006.1624935", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094071881"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5220/0002848800810090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099420210"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012", 
        "datePublishedReg": "2012-01-01", 
        "description": "Assessment of trauma patients with multiple injuries can be one of the most clinically challenging situations dealt with by the radiologist. We propose a fully automated method to detect acute vertebral body fractures on trauma CT studies. The spine is first segmented and partitioned into vertebrae. Then the cortical shell of the vertebral body is extracted using deformable dual-surface models. The extracted cortical shell is unwrapped onto a 2D map effectively converting a complex 3D fracture detection problem into a pattern recognition problem of fracture lines on a 2D plane. Twenty-eight features are computed for each fracture line and sent to a committee of support vector machines for classification. The system was tested on 18 trauma CT datasets and achieved 95.3% sensitivity and 1.7 false positives per case by leave-one-out cross validation.", 
        "editor": [
          {
            "familyName": "Ayache", 
            "givenName": "Nicholas", 
            "type": "Person"
          }, 
          {
            "familyName": "Delingette", 
            "givenName": "Herv\u00e9", 
            "type": "Person"
          }, 
          {
            "familyName": "Golland", 
            "givenName": "Polina", 
            "type": "Person"
          }, 
          {
            "familyName": "Mori", 
            "givenName": "Kensaku", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-642-33454-2_63", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4055703", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": {
          "isbn": [
            "978-3-642-33453-5", 
            "978-3-642-33454-2"
          ], 
          "name": "Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2012", 
          "type": "Book"
        }, 
        "name": "Detection of Vertebral Body Fractures Based on Cortical Shell Unwrapping", 
        "pagination": "509-16", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-642-33454-2_63"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "970e2ded2b47f709f903564461240eaf89c98cc70ade78a802fe804e28c19e0a"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1031708973"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "23286169"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-642-33454-2_63", 
          "https://app.dimensions.ai/details/publication/pub.1031708973"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T20:16", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000353.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-642-33454-2_63"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33454-2_63'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33454-2_63'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33454-2_63'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33454-2_63'


     

    This table displays all metadata directly associated to this object as RDF triples.

    205 TRIPLES      23 PREDICATES      54 URIs      37 LITERALS      25 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-642-33454-2_63 schema:about N0de3a979ea734025bacee6ef2248ab59
    2 N1b0151d9a96943a3944fa1e984f73bd6
    3 N2fcc0836ee15496c9a9ca4347a637b54
    4 N38b7651be8e44102b180000282c1f3d4
    5 N50dd6eba27a04b35828682f2caec9665
    6 N51c5174c816e4ca49915cff1a72961b6
    7 N58d13679d3bc48db82b71579293acd5a
    8 N5d6ef7bb442e402d8108767204a8e807
    9 N63251d6346b14af3bfedfa0d3129d85e
    10 N6f99f1fd0f314bd2a929444644077456
    11 N9f951dc6d7af452282ce6bed45898931
    12 Na0e569a20a8a49cfa2e2161534f76769
    13 Nb1550556c319409096ba4720dfb21794
    14 Nc127360406c44453907c5007c26c341f
    15 Nc12cf8cb40be49ea80dafe34d86c5c68
    16 Ne5220ad4f377461d81440db217e7669f
    17 anzsrc-for:08
    18 anzsrc-for:0801
    19 schema:author Nd886064ca0d24eb787095fe1dd034a31
    20 schema:citation sg:pub.10.1007/978-0-387-30162-4_415
    21 sg:pub.10.1007/978-3-540-74272-2_119
    22 https://doi.org/10.1016/j.ejrad.2007.12.001
    23 https://doi.org/10.1109/isbi.2006.1624935
    24 https://doi.org/10.1109/tpami.2007.59
    25 https://doi.org/10.1117/12.878055
    26 https://doi.org/10.1117/12.911703
    27 https://doi.org/10.1145/357994.358023
    28 https://doi.org/10.2106/jbjs.h.01304
    29 https://doi.org/10.5220/0002848800810090
    30 schema:datePublished 2012
    31 schema:datePublishedReg 2012-01-01
    32 schema:description Assessment of trauma patients with multiple injuries can be one of the most clinically challenging situations dealt with by the radiologist. We propose a fully automated method to detect acute vertebral body fractures on trauma CT studies. The spine is first segmented and partitioned into vertebrae. Then the cortical shell of the vertebral body is extracted using deformable dual-surface models. The extracted cortical shell is unwrapped onto a 2D map effectively converting a complex 3D fracture detection problem into a pattern recognition problem of fracture lines on a 2D plane. Twenty-eight features are computed for each fracture line and sent to a committee of support vector machines for classification. The system was tested on 18 trauma CT datasets and achieved 95.3% sensitivity and 1.7 false positives per case by leave-one-out cross validation.
    33 schema:editor N6ac582ba067945aeb0a4e883c4b432e1
    34 schema:genre chapter
    35 schema:inLanguage en
    36 schema:isAccessibleForFree true
    37 schema:isPartOf Nb5ca482f796946b49b1a1e2c126ac08e
    38 schema:name Detection of Vertebral Body Fractures Based on Cortical Shell Unwrapping
    39 schema:pagination 509-16
    40 schema:productId N218bb626526a4df3966d8debbc3bdadf
    41 N6610816ec4dc42cd97146f9acb0bb680
    42 Nc0e516e2ea9c439eaac9f256c24f9b99
    43 Ned96c6dc54a24a6faaa19831c7453193
    44 schema:publisher N6c73946fbd684fb8b2b265479ad9ef04
    45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031708973
    46 https://doi.org/10.1007/978-3-642-33454-2_63
    47 schema:sdDatePublished 2019-04-15T20:16
    48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    49 schema:sdPublisher Ndb76951b91fc42deafbd9d5f5c6e765b
    50 schema:url http://link.springer.com/10.1007/978-3-642-33454-2_63
    51 sgo:license sg:explorer/license/
    52 sgo:sdDataset chapters
    53 rdf:type schema:Chapter
    54 N0966f5e14b1f4a508ff1b8dc50064f71 rdf:first N722ba9e8b6724499887ba428dfee9255
    55 rdf:rest Nbd43e0dfbdd64ef18be7fee6dba1836f
    56 N0de3a979ea734025bacee6ef2248ab59 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    57 schema:name Algorithms
    58 rdf:type schema:DefinedTerm
    59 N1b0151d9a96943a3944fa1e984f73bd6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    60 schema:name Aged, 80 and over
    61 rdf:type schema:DefinedTerm
    62 N1dc023ada37e49938641cf2fda0acc0a schema:familyName Mori
    63 schema:givenName Kensaku
    64 rdf:type schema:Person
    65 N218bb626526a4df3966d8debbc3bdadf schema:name dimensions_id
    66 schema:value pub.1031708973
    67 rdf:type schema:PropertyValue
    68 N2fcc0836ee15496c9a9ca4347a637b54 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    69 schema:name Reproducibility of Results
    70 rdf:type schema:DefinedTerm
    71 N3452bdd4b78d414f9749d080f12c608e rdf:first sg:person.01143237134.25
    72 rdf:rest N9ecfe4b78e2e428e94fa7270ddc6c0ce
    73 N38b7651be8e44102b180000282c1f3d4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    74 schema:name Sensitivity and Specificity
    75 rdf:type schema:DefinedTerm
    76 N4a411497ae82467b9718ae690ab6f484 rdf:first N9a98588db9a94e99908ce6058e927fd7
    77 rdf:rest N0966f5e14b1f4a508ff1b8dc50064f71
    78 N50dd6eba27a04b35828682f2caec9665 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    79 schema:name Spinal Fractures
    80 rdf:type schema:DefinedTerm
    81 N51c5174c816e4ca49915cff1a72961b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    82 schema:name Radiographic Image Interpretation, Computer-Assisted
    83 rdf:type schema:DefinedTerm
    84 N58d13679d3bc48db82b71579293acd5a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    85 schema:name Humans
    86 rdf:type schema:DefinedTerm
    87 N5d6ef7bb442e402d8108767204a8e807 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    88 schema:name Adult
    89 rdf:type schema:DefinedTerm
    90 N63251d6346b14af3bfedfa0d3129d85e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    91 schema:name Tomography, X-Ray Computed
    92 rdf:type schema:DefinedTerm
    93 N6610816ec4dc42cd97146f9acb0bb680 schema:name readcube_id
    94 schema:value 970e2ded2b47f709f903564461240eaf89c98cc70ade78a802fe804e28c19e0a
    95 rdf:type schema:PropertyValue
    96 N6ac582ba067945aeb0a4e883c4b432e1 rdf:first N78ed328be3c246c9bcf423743effc909
    97 rdf:rest N4a411497ae82467b9718ae690ab6f484
    98 N6c73946fbd684fb8b2b265479ad9ef04 schema:location Berlin, Heidelberg
    99 schema:name Springer Berlin Heidelberg
    100 rdf:type schema:Organisation
    101 N6f99f1fd0f314bd2a929444644077456 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    102 schema:name Middle Aged
    103 rdf:type schema:DefinedTerm
    104 N722ba9e8b6724499887ba428dfee9255 schema:familyName Golland
    105 schema:givenName Polina
    106 rdf:type schema:Person
    107 N78ed328be3c246c9bcf423743effc909 schema:familyName Ayache
    108 schema:givenName Nicholas
    109 rdf:type schema:Person
    110 N8bb98121b1c444869d43c0be75c92b5c rdf:first sg:person.011331054577.30
    111 rdf:rest rdf:nil
    112 N9a98588db9a94e99908ce6058e927fd7 schema:familyName Delingette
    113 schema:givenName Hervé
    114 rdf:type schema:Person
    115 N9ecfe4b78e2e428e94fa7270ddc6c0ce rdf:first sg:person.01074602356.30
    116 rdf:rest N8bb98121b1c444869d43c0be75c92b5c
    117 N9f951dc6d7af452282ce6bed45898931 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Male
    119 rdf:type schema:DefinedTerm
    120 Na0e569a20a8a49cfa2e2161534f76769 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Aged
    122 rdf:type schema:DefinedTerm
    123 Nb1550556c319409096ba4720dfb21794 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Radiographic Image Enhancement
    125 rdf:type schema:DefinedTerm
    126 Nb59da36dfe6b4102af861c91e9d53aa0 schema:name Department of Radiological Sciences, University of California, Irvine School of Medicine, USA
    127 rdf:type schema:Organization
    128 Nb5ca482f796946b49b1a1e2c126ac08e schema:isbn 978-3-642-33453-5
    129 978-3-642-33454-2
    130 schema:name Medical Image Computing and Computer-Assisted Intervention – MICCAI 2012
    131 rdf:type schema:Book
    132 Nbd43e0dfbdd64ef18be7fee6dba1836f rdf:first N1dc023ada37e49938641cf2fda0acc0a
    133 rdf:rest rdf:nil
    134 Nc0e516e2ea9c439eaac9f256c24f9b99 schema:name pubmed_id
    135 schema:value 23286169
    136 rdf:type schema:PropertyValue
    137 Nc127360406c44453907c5007c26c341f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Adolescent
    139 rdf:type schema:DefinedTerm
    140 Nc12cf8cb40be49ea80dafe34d86c5c68 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Young Adult
    142 rdf:type schema:DefinedTerm
    143 Nd886064ca0d24eb787095fe1dd034a31 rdf:first sg:person.012366760067.46
    144 rdf:rest N3452bdd4b78d414f9749d080f12c608e
    145 Ndb76951b91fc42deafbd9d5f5c6e765b schema:name Springer Nature - SN SciGraph project
    146 rdf:type schema:Organization
    147 Ne5220ad4f377461d81440db217e7669f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Pattern Recognition, Automated
    149 rdf:type schema:DefinedTerm
    150 Ned96c6dc54a24a6faaa19831c7453193 schema:name doi
    151 schema:value 10.1007/978-3-642-33454-2_63
    152 rdf:type schema:PropertyValue
    153 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    154 schema:name Information and Computing Sciences
    155 rdf:type schema:DefinedTerm
    156 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    157 schema:name Artificial Intelligence and Image Processing
    158 rdf:type schema:DefinedTerm
    159 sg:grant.4055703 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-642-33454-2_63
    160 rdf:type schema:MonetaryGrant
    161 sg:person.01074602356.30 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
    162 schema:familyName Munoz
    163 schema:givenName Hector
    164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074602356.30
    165 rdf:type schema:Person
    166 sg:person.011331054577.30 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
    167 schema:familyName Summers
    168 schema:givenName Ronald M.
    169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331054577.30
    170 rdf:type schema:Person
    171 sg:person.01143237134.25 schema:affiliation Nb59da36dfe6b4102af861c91e9d53aa0
    172 schema:familyName Burns
    173 schema:givenName Joseph E.
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143237134.25
    175 rdf:type schema:Person
    176 sg:person.012366760067.46 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
    177 schema:familyName Yao
    178 schema:givenName Jianhua
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012366760067.46
    180 rdf:type schema:Person
    181 sg:pub.10.1007/978-0-387-30162-4_415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035382537
    182 https://doi.org/10.1007/978-0-387-30162-4_415
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/978-3-540-74272-2_119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035697862
    185 https://doi.org/10.1007/978-3-540-74272-2_119
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1016/j.ejrad.2007.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029584926
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1109/isbi.2006.1624935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094071881
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1109/tpami.2007.59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743350
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1117/12.878055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037276339
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1117/12.911703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032299474
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1145/357994.358023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030198768
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.2106/jbjs.h.01304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068901124
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.5220/0002848800810090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099420210
    202 rdf:type schema:CreativeWork
    203 https://www.grid.ac/institutes/grid.410305.3 schema:alternateName National Institutes of Health Clinical Center
    204 schema:name Radiology and Imaging Sciences Department, Clinical Center, The National Institutes of Health, Bethesda, MD 20892, USA
    205 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...