Ultrasound and Fluoroscopic Images Fusion by Autonomous Ultrasound Probe Detection View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2012

AUTHORS

Peter Mountney , Razvan Ionasec , Markus Kaizer , Sina Mamaghani , Wen Wu , Terrence Chen , Matthias John , Jan Boese , Dorin Comaniciu

ABSTRACT

New minimal-invasive interventions such as transcatheter valve procedures exploit multiple imaging modalities to guide tools (fluoroscopy) and visualize soft tissue (transesophageal echocardiography (TEE)). Currently, these complementary modalities are visualized in separate coordinate systems and on separate monitors creating a challenging clinical workflow. This paper proposes a novel framework for fusing TEE and fluoroscopy by detecting the pose of the TEE probe in the fluoroscopic image. Probe pose detection is challenging in fluoroscopy and conventional computer vision techniques are not well suited. Current research requires manual initialization or the addition of fiducials. The main contribution of this paper is autonomous six DoF pose detection by combining discriminative learning techniques with a fast binary template library. The pose estimation problem is reformulated to incrementally detect pose parameters by exploiting natural invariances in the image. The theoretical contribution of this paper is validated on synthetic, phantom and in vivo data. The practical application of this technique is supported by accurate results (< 5 mm in-plane error) and computation time of 0.5s. More... »

PAGES

544-51

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-33418-4_67

DOI

http://dx.doi.org/10.1007/978-3-642-33418-4_67

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009497600

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23286091


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fiducial Markers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluoroscopy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Enhancement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pattern Recognition, Automated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phantoms, Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Subtraction Technique", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ultrasonography", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Siemens (United States)", 
          "id": "https://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Siemens Corporate Research & Technology, Princeton, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mountney", 
        "givenName": "Peter", 
        "id": "sg:person.0702376130.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702376130.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens (United States)", 
          "id": "https://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Siemens Corporate Research & Technology, Princeton, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ionasec", 
        "givenName": "Razvan", 
        "id": "sg:person.01010560470.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010560470.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens (Germany)", 
          "id": "https://www.grid.ac/institutes/grid.5406.7", 
          "name": [
            "Siemens AG, Healthcare Sector, Forchheim, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaizer", 
        "givenName": "Markus", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens (United States)", 
          "id": "https://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Siemens Corporate Research & Technology, Princeton, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mamaghani", 
        "givenName": "Sina", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens (United States)", 
          "id": "https://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Siemens Corporate Research & Technology, Princeton, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Wen", 
        "id": "sg:person.012360474011.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012360474011.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens (United States)", 
          "id": "https://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Siemens Corporate Research & Technology, Princeton, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Terrence", 
        "id": "sg:person.0753267612.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753267612.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens (Germany)", 
          "id": "https://www.grid.ac/institutes/grid.5406.7", 
          "name": [
            "Siemens AG, Healthcare Sector, Forchheim, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "John", 
        "givenName": "Matthias", 
        "id": "sg:person.01057125010.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057125010.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens (Germany)", 
          "id": "https://www.grid.ac/institutes/grid.5406.7", 
          "name": [
            "Siemens AG, Healthcare Sector, Forchheim, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boese", 
        "givenName": "Jan", 
        "id": "sg:person.01241466610.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241466610.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens (United States)", 
          "id": "https://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Siemens Corporate Research & Technology, Princeton, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Comaniciu", 
        "givenName": "Dorin", 
        "id": "sg:person.01066111014.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-01932-6_35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008997613", 
          "https://doi.org/10.1007/978-3-642-01932-6_35"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-01932-6_35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008997613", 
          "https://doi.org/10.1007/978-3-642-01932-6_35"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.media.2011.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010791772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-13711-2_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050189355", 
          "https://doi.org/10.1007/978-3-642-13711-2_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-13711-2_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050189355", 
          "https://doi.org/10.1007/978-3-642-13711-2_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/55/13/n01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059028228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2012.2189392", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061528749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2010.2048756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061695562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2010.5539908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095125382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2011.5995553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095544493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5244/c.23.58", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099325675"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "New minimal-invasive interventions such as transcatheter valve procedures exploit multiple imaging modalities to guide tools (fluoroscopy) and visualize soft tissue (transesophageal echocardiography (TEE)). Currently, these complementary modalities are visualized in separate coordinate systems and on separate monitors creating a challenging clinical workflow. This paper proposes a novel framework for fusing TEE and fluoroscopy by detecting the pose of the TEE probe in the fluoroscopic image. Probe pose detection is challenging in fluoroscopy and conventional computer vision techniques are not well suited. Current research requires manual initialization or the addition of fiducials. The main contribution of this paper is autonomous six DoF pose detection by combining discriminative learning techniques with a fast binary template library. The pose estimation problem is reformulated to incrementally detect pose parameters by exploiting natural invariances in the image. The theoretical contribution of this paper is validated on synthetic, phantom and in vivo data. The practical application of this technique is supported by accurate results (< 5 mm in-plane error) and computation time of 0.5s.", 
    "editor": [
      {
        "familyName": "Ayache", 
        "givenName": "Nicholas", 
        "type": "Person"
      }, 
      {
        "familyName": "Delingette", 
        "givenName": "Herv\u00e9", 
        "type": "Person"
      }, 
      {
        "familyName": "Golland", 
        "givenName": "Polina", 
        "type": "Person"
      }, 
      {
        "familyName": "Mori", 
        "givenName": "Kensaku", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-33418-4_67", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-33417-7", 
        "978-3-642-33418-4"
      ], 
      "name": "Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2012", 
      "type": "Book"
    }, 
    "name": "Ultrasound and Fluoroscopic Images Fusion by Autonomous Ultrasound Probe Detection", 
    "pagination": "544-51", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-33418-4_67"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2d3e099ec12d96f93e80596496d362ced53d143aca419798a09709919ec1b163"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009497600"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23286091"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-33418-4_67", 
      "https://app.dimensions.ai/details/publication/pub.1009497600"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T11:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000249.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-33418-4_67"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33418-4_67'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33418-4_67'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33418-4_67'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33418-4_67'


 

This table displays all metadata directly associated to this object as RDF triples.

218 TRIPLES      23 PREDICATES      49 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-33418-4_67 schema:about N00e14239a7324d1aae71ba8f4420de8f
2 N0cbfe29957834b0d83f4959a575e22e3
3 N27cf5d2709f24dbd8e97b32433170e8e
4 N733dcc9c1faf484588dbe867262ab50b
5 N8968c358ca89475288659de32b22b43f
6 N9924f851e1ea4749993f139af4edf893
7 N9ba5aa1fc6054803af7ad0ee9437e673
8 Na4e4e6660a4c430c959ba225420b41ed
9 Ncd614246b8a847129cbce9f3b126f4f3
10 Ne0910642f0a64c5f803d67dfb54e3281
11 Ne8321efde9e14c5ab2042dfdabf8f372
12 Nfc9cadaf55304fe3a3b330e1f68f42fa
13 anzsrc-for:08
14 anzsrc-for:0801
15 schema:author Nfba448cf0f164501afb6be361fc54960
16 schema:citation sg:pub.10.1007/978-3-642-01932-6_35
17 sg:pub.10.1007/978-3-642-13711-2_12
18 https://doi.org/10.1016/j.media.2011.05.003
19 https://doi.org/10.1088/0031-9155/55/13/n01
20 https://doi.org/10.1109/cvpr.2010.5539908
21 https://doi.org/10.1109/cvpr.2011.5995553
22 https://doi.org/10.1109/tbme.2012.2189392
23 https://doi.org/10.1109/tmi.2010.2048756
24 https://doi.org/10.5244/c.23.58
25 schema:datePublished 2012
26 schema:datePublishedReg 2012-01-01
27 schema:description New minimal-invasive interventions such as transcatheter valve procedures exploit multiple imaging modalities to guide tools (fluoroscopy) and visualize soft tissue (transesophageal echocardiography (TEE)). Currently, these complementary modalities are visualized in separate coordinate systems and on separate monitors creating a challenging clinical workflow. This paper proposes a novel framework for fusing TEE and fluoroscopy by detecting the pose of the TEE probe in the fluoroscopic image. Probe pose detection is challenging in fluoroscopy and conventional computer vision techniques are not well suited. Current research requires manual initialization or the addition of fiducials. The main contribution of this paper is autonomous six DoF pose detection by combining discriminative learning techniques with a fast binary template library. The pose estimation problem is reformulated to incrementally detect pose parameters by exploiting natural invariances in the image. The theoretical contribution of this paper is validated on synthetic, phantom and in vivo data. The practical application of this technique is supported by accurate results (< 5 mm in-plane error) and computation time of 0.5s.
28 schema:editor N451c3741c40e4ed7a2eebbe3d7074c98
29 schema:genre chapter
30 schema:inLanguage en
31 schema:isAccessibleForFree true
32 schema:isPartOf N0f699b0a0ce04cfba6c3b7394df8ca49
33 schema:name Ultrasound and Fluoroscopic Images Fusion by Autonomous Ultrasound Probe Detection
34 schema:pagination 544-51
35 schema:productId N16f473de3d0a4bb8a87831c1b313d600
36 N8ecc626dc17d4b6eac74c21338082e3d
37 Na72051582bf749f799ab29466e2a8332
38 Nafbb167a7e004e14957d49ba0682fc8d
39 schema:publisher Na7c90ab5f8634f2d9ff69d537f2274f1
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009497600
41 https://doi.org/10.1007/978-3-642-33418-4_67
42 schema:sdDatePublished 2019-04-15T11:32
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N8357db19cd8947ceb9da12a709ced4ed
45 schema:url http://link.springer.com/10.1007/978-3-642-33418-4_67
46 sgo:license sg:explorer/license/
47 sgo:sdDataset chapters
48 rdf:type schema:Chapter
49 N00e14239a7324d1aae71ba8f4420de8f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
50 schema:name Reproducibility of Results
51 rdf:type schema:DefinedTerm
52 N00e78c6ef995462982b09e801321cafd rdf:first sg:person.01241466610.88
53 rdf:rest N07ef8e81962f447f8bddc9fae1997f22
54 N02c97926b942434da1f4bd366142ad47 schema:familyName Golland
55 schema:givenName Polina
56 rdf:type schema:Person
57 N02f925052a95437681bf23e6f8f15d43 schema:familyName Mori
58 schema:givenName Kensaku
59 rdf:type schema:Person
60 N07ef8e81962f447f8bddc9fae1997f22 rdf:first sg:person.01066111014.77
61 rdf:rest rdf:nil
62 N0cbfe29957834b0d83f4959a575e22e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Subtraction Technique
64 rdf:type schema:DefinedTerm
65 N0f699b0a0ce04cfba6c3b7394df8ca49 schema:isbn 978-3-642-33417-7
66 978-3-642-33418-4
67 schema:name Medical Image Computing and Computer-Assisted Intervention – MICCAI 2012
68 rdf:type schema:Book
69 N16f473de3d0a4bb8a87831c1b313d600 schema:name pubmed_id
70 schema:value 23286091
71 rdf:type schema:PropertyValue
72 N27cf5d2709f24dbd8e97b32433170e8e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Fiducial Markers
74 rdf:type schema:DefinedTerm
75 N451c3741c40e4ed7a2eebbe3d7074c98 rdf:first Ne577dd9414c54b49b182ddd797d114de
76 rdf:rest N63b2c98d974c495d8a860dc259a5a483
77 N4dd473117c4a4a6e8a9b353e70312f40 rdf:first N9e03bd95d95644a7b3289b1d309044b2
78 rdf:rest N63cdcda21a95418798b2fd0bee07b5c0
79 N605b614ae0334d4aa24c23944896d7fb schema:affiliation https://www.grid.ac/institutes/grid.5406.7
80 schema:familyName Kaizer
81 schema:givenName Markus
82 rdf:type schema:Person
83 N63b2c98d974c495d8a860dc259a5a483 rdf:first Nd6ee40e391774d12abecd3dc62346abe
84 rdf:rest Nfc1a5cc1aff241bebc3e92c34f9329fc
85 N63cdcda21a95418798b2fd0bee07b5c0 rdf:first sg:person.012360474011.61
86 rdf:rest N67015fcb460b4644baccc3a75b54c17a
87 N67015fcb460b4644baccc3a75b54c17a rdf:first sg:person.0753267612.06
88 rdf:rest Nb52becab11064a41a79bc6fbc8281921
89 N733dcc9c1faf484588dbe867262ab50b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Image Enhancement
91 rdf:type schema:DefinedTerm
92 N8144738eeec34fb9aa74a277c9ea6f5a rdf:first sg:person.01010560470.38
93 rdf:rest Ne7a72c84bdc844c98e9518f045dc4af2
94 N8357db19cd8947ceb9da12a709ced4ed schema:name Springer Nature - SN SciGraph project
95 rdf:type schema:Organization
96 N8968c358ca89475288659de32b22b43f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Image Interpretation, Computer-Assisted
98 rdf:type schema:DefinedTerm
99 N8ecc626dc17d4b6eac74c21338082e3d schema:name readcube_id
100 schema:value 2d3e099ec12d96f93e80596496d362ced53d143aca419798a09709919ec1b163
101 rdf:type schema:PropertyValue
102 N9924f851e1ea4749993f139af4edf893 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Phantoms, Imaging
104 rdf:type schema:DefinedTerm
105 N9ba5aa1fc6054803af7ad0ee9437e673 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Imaging, Three-Dimensional
107 rdf:type schema:DefinedTerm
108 N9e03bd95d95644a7b3289b1d309044b2 schema:affiliation https://www.grid.ac/institutes/grid.419233.e
109 schema:familyName Mamaghani
110 schema:givenName Sina
111 rdf:type schema:Person
112 Na4e4e6660a4c430c959ba225420b41ed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Fluoroscopy
114 rdf:type schema:DefinedTerm
115 Na72051582bf749f799ab29466e2a8332 schema:name dimensions_id
116 schema:value pub.1009497600
117 rdf:type schema:PropertyValue
118 Na7c90ab5f8634f2d9ff69d537f2274f1 schema:location Berlin, Heidelberg
119 schema:name Springer Berlin Heidelberg
120 rdf:type schema:Organisation
121 Nafbb167a7e004e14957d49ba0682fc8d schema:name doi
122 schema:value 10.1007/978-3-642-33418-4_67
123 rdf:type schema:PropertyValue
124 Nb18244bca59645d7b65ebd6a7b5e051f rdf:first N02f925052a95437681bf23e6f8f15d43
125 rdf:rest rdf:nil
126 Nb52becab11064a41a79bc6fbc8281921 rdf:first sg:person.01057125010.36
127 rdf:rest N00e78c6ef995462982b09e801321cafd
128 Ncd614246b8a847129cbce9f3b126f4f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Algorithms
130 rdf:type schema:DefinedTerm
131 Nd6ee40e391774d12abecd3dc62346abe schema:familyName Delingette
132 schema:givenName Hervé
133 rdf:type schema:Person
134 Ne0910642f0a64c5f803d67dfb54e3281 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Ultrasonography
136 rdf:type schema:DefinedTerm
137 Ne577dd9414c54b49b182ddd797d114de schema:familyName Ayache
138 schema:givenName Nicholas
139 rdf:type schema:Person
140 Ne7a72c84bdc844c98e9518f045dc4af2 rdf:first N605b614ae0334d4aa24c23944896d7fb
141 rdf:rest N4dd473117c4a4a6e8a9b353e70312f40
142 Ne8321efde9e14c5ab2042dfdabf8f372 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Sensitivity and Specificity
144 rdf:type schema:DefinedTerm
145 Nfba448cf0f164501afb6be361fc54960 rdf:first sg:person.0702376130.54
146 rdf:rest N8144738eeec34fb9aa74a277c9ea6f5a
147 Nfc1a5cc1aff241bebc3e92c34f9329fc rdf:first N02c97926b942434da1f4bd366142ad47
148 rdf:rest Nb18244bca59645d7b65ebd6a7b5e051f
149 Nfc9cadaf55304fe3a3b330e1f68f42fa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Pattern Recognition, Automated
151 rdf:type schema:DefinedTerm
152 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
153 schema:name Information and Computing Sciences
154 rdf:type schema:DefinedTerm
155 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
156 schema:name Artificial Intelligence and Image Processing
157 rdf:type schema:DefinedTerm
158 sg:person.01010560470.38 schema:affiliation https://www.grid.ac/institutes/grid.419233.e
159 schema:familyName Ionasec
160 schema:givenName Razvan
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010560470.38
162 rdf:type schema:Person
163 sg:person.01057125010.36 schema:affiliation https://www.grid.ac/institutes/grid.5406.7
164 schema:familyName John
165 schema:givenName Matthias
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057125010.36
167 rdf:type schema:Person
168 sg:person.01066111014.77 schema:affiliation https://www.grid.ac/institutes/grid.419233.e
169 schema:familyName Comaniciu
170 schema:givenName Dorin
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77
172 rdf:type schema:Person
173 sg:person.012360474011.61 schema:affiliation https://www.grid.ac/institutes/grid.419233.e
174 schema:familyName Wu
175 schema:givenName Wen
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012360474011.61
177 rdf:type schema:Person
178 sg:person.01241466610.88 schema:affiliation https://www.grid.ac/institutes/grid.5406.7
179 schema:familyName Boese
180 schema:givenName Jan
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241466610.88
182 rdf:type schema:Person
183 sg:person.0702376130.54 schema:affiliation https://www.grid.ac/institutes/grid.419233.e
184 schema:familyName Mountney
185 schema:givenName Peter
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702376130.54
187 rdf:type schema:Person
188 sg:person.0753267612.06 schema:affiliation https://www.grid.ac/institutes/grid.419233.e
189 schema:familyName Chen
190 schema:givenName Terrence
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753267612.06
192 rdf:type schema:Person
193 sg:pub.10.1007/978-3-642-01932-6_35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008997613
194 https://doi.org/10.1007/978-3-642-01932-6_35
195 rdf:type schema:CreativeWork
196 sg:pub.10.1007/978-3-642-13711-2_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050189355
197 https://doi.org/10.1007/978-3-642-13711-2_12
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.media.2011.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010791772
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1088/0031-9155/55/13/n01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059028228
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1109/cvpr.2010.5539908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095125382
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1109/cvpr.2011.5995553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095544493
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1109/tbme.2012.2189392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061528749
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1109/tmi.2010.2048756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061695562
210 rdf:type schema:CreativeWork
211 https://doi.org/10.5244/c.23.58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099325675
212 rdf:type schema:CreativeWork
213 https://www.grid.ac/institutes/grid.419233.e schema:alternateName Siemens (United States)
214 schema:name Siemens Corporate Research & Technology, Princeton, USA
215 rdf:type schema:Organization
216 https://www.grid.ac/institutes/grid.5406.7 schema:alternateName Siemens (Germany)
217 schema:name Siemens AG, Healthcare Sector, Forchheim, Germany
218 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...