LBM-EP: Lattice-Boltzmann Method for Fast Cardiac Electrophysiology Simulation from 3D Images View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2012

AUTHORS

S. Rapaka , T. Mansi , B. Georgescu , M. Pop , G. A. Wright , A. Kamen , Dorin Comaniciu

ABSTRACT

Current treatments of heart rhythm troubles require careful planning and guidance for optimal outcomes. Computational models of cardiac electrophysiology are being proposed for therapy planning but current approaches are either too simplified or too computationally intensive for patient-specific simulations in clinical practice. This paper presents a novel approach, LBM-EP, to solve any type of mono-domain cardiac electrophysiology models at near real-time that is especially tailored for patient-specific simulations. The domain is discretized on a Cartesian grid with a level-set representation of patient’s heart geometry, previously estimated from images automatically. The cell model is calculated node-wise, while the transmembrane potential is diffused using Lattice-Boltzmann method within the domain defined by the level-set. Experiments on synthetic cases, on a data set from CESC’10 and on one patient with myocardium scar showed that LBM-EP provides results comparable to an FEM implementation, while being 10 − 45 times faster. Fast, accurate, scalable and requiring no specific meshing, LBM-EP paves the way to efficient and detailed models of cardiac electrophysiology for therapy planning. More... »

PAGES

33-40

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-33418-4_5

DOI

http://dx.doi.org/10.1007/978-3-642-33418-4_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029658150

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23286029


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Action Potentials", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heart Conduction System", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Anatomic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Cardiovascular", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Corporate Research and Technology, Imaging and Computer Vision, Siemens Corporation, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Corporate Research and Technology, Imaging and Computer Vision, Siemens Corporation, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rapaka", 
        "givenName": "S.", 
        "id": "sg:person.0754574330.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754574330.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Corporate Research and Technology, Imaging and Computer Vision, Siemens Corporation, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Corporate Research and Technology, Imaging and Computer Vision, Siemens Corporation, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mansi", 
        "givenName": "T.", 
        "id": "sg:person.01217474726.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217474726.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Corporate Research and Technology, Imaging and Computer Vision, Siemens Corporation, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Corporate Research and Technology, Imaging and Computer Vision, Siemens Corporation, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Georgescu", 
        "givenName": "B.", 
        "id": "sg:person.0703547214.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medical Biophysics, University of Toronto, Sunnybrook Health Sciences Centre, Imaging Research, Toronto, ON, Canada", 
          "id": "http://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "Department of Medical Biophysics, University of Toronto, Sunnybrook Health Sciences Centre, Imaging Research, Toronto, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pop", 
        "givenName": "M.", 
        "id": "sg:person.01165464466.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165464466.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medical Biophysics, University of Toronto, Sunnybrook Health Sciences Centre, Imaging Research, Toronto, ON, Canada", 
          "id": "http://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "Department of Medical Biophysics, University of Toronto, Sunnybrook Health Sciences Centre, Imaging Research, Toronto, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wright", 
        "givenName": "G. A.", 
        "id": "sg:person.01250665515.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250665515.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Corporate Research and Technology, Imaging and Computer Vision, Siemens Corporation, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Corporate Research and Technology, Imaging and Computer Vision, Siemens Corporation, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kamen", 
        "givenName": "A.", 
        "id": "sg:person.0656777564.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656777564.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Corporate Research and Technology, Imaging and Computer Vision, Siemens Corporation, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Corporate Research and Technology, Imaging and Computer Vision, Siemens Corporation, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Comaniciu", 
        "givenName": "Dorin", 
        "id": "sg:person.01066111014.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "Current treatments of heart rhythm troubles require careful planning and guidance for optimal outcomes. Computational models of cardiac electrophysiology are being proposed for therapy planning but current approaches are either too simplified or too computationally intensive for patient-specific simulations in clinical practice. This paper presents a novel approach, LBM-EP, to solve any type of mono-domain cardiac electrophysiology models at near real-time that is especially tailored for patient-specific simulations. The domain is discretized on a Cartesian grid with a level-set representation of patient\u2019s heart geometry, previously estimated from images automatically. The cell model is calculated node-wise, while the transmembrane potential is diffused using Lattice-Boltzmann method within the domain defined by the level-set. Experiments on synthetic cases, on a data set from CESC\u201910 and on one patient with myocardium scar showed that LBM-EP provides results comparable to an FEM implementation, while being 10\u2009\u2212\u200945 times faster. Fast, accurate, scalable and requiring no specific meshing, LBM-EP paves the way to efficient and detailed models of cardiac electrophysiology for therapy planning.", 
    "editor": [
      {
        "familyName": "Ayache", 
        "givenName": "Nicholas", 
        "type": "Person"
      }, 
      {
        "familyName": "Delingette", 
        "givenName": "Herv\u00e9", 
        "type": "Person"
      }, 
      {
        "familyName": "Golland", 
        "givenName": "Polina", 
        "type": "Person"
      }, 
      {
        "familyName": "Mori", 
        "givenName": "Kensaku", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-33418-4_5", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-33417-7", 
        "978-3-642-33418-4"
      ], 
      "name": "Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2012", 
      "type": "Book"
    }, 
    "keywords": [
      "patient-specific simulations", 
      "patient heart geometries", 
      "cardiac electrophysiology simulations", 
      "level-set representation", 
      "cardiac electrophysiology models", 
      "therapy planning", 
      "electrophysiology simulations", 
      "heart geometry", 
      "novel approach", 
      "computational model", 
      "electrophysiology models", 
      "current approaches", 
      "Cartesian grid", 
      "images", 
      "lattice-Boltzmann method", 
      "planning", 
      "FEM implementation", 
      "synthetic cases", 
      "simulations", 
      "rhythm troubles", 
      "implementation", 
      "detailed model", 
      "domain", 
      "grid", 
      "cardiac electrophysiology", 
      "representation", 
      "careful planning", 
      "model", 
      "meshing", 
      "method", 
      "way", 
      "current treatment", 
      "clinical practice", 
      "experiments", 
      "optimal outcomes", 
      "data", 
      "guidance", 
      "time", 
      "trouble", 
      "electrophysiology", 
      "results", 
      "cell model", 
      "patients", 
      "transmembrane potential", 
      "practice", 
      "outcomes", 
      "treatment", 
      "types", 
      "scar", 
      "geometry", 
      "cases", 
      "potential", 
      "approach", 
      "paper", 
      "heart rhythm troubles", 
      "LBM-EP", 
      "mono-domain cardiac electrophysiology models", 
      "CESC\u201910", 
      "myocardium scar", 
      "specific meshing", 
      "Fast Cardiac Electrophysiology Simulation"
    ], 
    "name": "LBM-EP: Lattice-Boltzmann Method for Fast Cardiac Electrophysiology Simulation from 3D Images", 
    "pagination": "33-40", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029658150"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-33418-4_5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23286029"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-33418-4_5", 
      "https://app.dimensions.ai/details/publication/pub.1029658150"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_64.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-33418-4_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33418-4_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33418-4_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33418-4_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33418-4_5'


 

This table displays all metadata directly associated to this object as RDF triples.

229 TRIPLES      23 PREDICATES      99 URIs      90 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-33418-4_5 schema:about N118d8834ace34194b50260305339b5ab
2 N25acd9c5a45f45bd90187fe6413185a0
3 N38758d5a1b8c46f38eb342b401c93da8
4 N38e8c9e265f24a9c87a94d1c5ae32d4a
5 Nadeea72c8f8e46bb88e7e89d29e571b9
6 Naf576b3876664298b52238542833a83b
7 Nd260fa5d11f44846835e5c6564804cf7
8 Nf7db722fedfb4586be09cd5b76cab075
9 Nff2a35cb7a2b4a119973973cdc7065ec
10 anzsrc-for:08
11 anzsrc-for:0801
12 anzsrc-for:11
13 anzsrc-for:1102
14 schema:author N274195eb316347358372275ed1c7c222
15 schema:datePublished 2012
16 schema:datePublishedReg 2012-01-01
17 schema:description Current treatments of heart rhythm troubles require careful planning and guidance for optimal outcomes. Computational models of cardiac electrophysiology are being proposed for therapy planning but current approaches are either too simplified or too computationally intensive for patient-specific simulations in clinical practice. This paper presents a novel approach, LBM-EP, to solve any type of mono-domain cardiac electrophysiology models at near real-time that is especially tailored for patient-specific simulations. The domain is discretized on a Cartesian grid with a level-set representation of patient’s heart geometry, previously estimated from images automatically. The cell model is calculated node-wise, while the transmembrane potential is diffused using Lattice-Boltzmann method within the domain defined by the level-set. Experiments on synthetic cases, on a data set from CESC’10 and on one patient with myocardium scar showed that LBM-EP provides results comparable to an FEM implementation, while being 10 − 45 times faster. Fast, accurate, scalable and requiring no specific meshing, LBM-EP paves the way to efficient and detailed models of cardiac electrophysiology for therapy planning.
18 schema:editor N008e40f82bdf43338ede9b1a65ec4ede
19 schema:genre chapter
20 schema:inLanguage en
21 schema:isAccessibleForFree true
22 schema:isPartOf Ne019a5634af64f87a7e96fdaf70f7538
23 schema:keywords CESC’10
24 Cartesian grid
25 FEM implementation
26 Fast Cardiac Electrophysiology Simulation
27 LBM-EP
28 approach
29 cardiac electrophysiology
30 cardiac electrophysiology models
31 cardiac electrophysiology simulations
32 careful planning
33 cases
34 cell model
35 clinical practice
36 computational model
37 current approaches
38 current treatment
39 data
40 detailed model
41 domain
42 electrophysiology
43 electrophysiology models
44 electrophysiology simulations
45 experiments
46 geometry
47 grid
48 guidance
49 heart geometry
50 heart rhythm troubles
51 images
52 implementation
53 lattice-Boltzmann method
54 level-set representation
55 meshing
56 method
57 model
58 mono-domain cardiac electrophysiology models
59 myocardium scar
60 novel approach
61 optimal outcomes
62 outcomes
63 paper
64 patient heart geometries
65 patient-specific simulations
66 patients
67 planning
68 potential
69 practice
70 representation
71 results
72 rhythm troubles
73 scar
74 simulations
75 specific meshing
76 synthetic cases
77 therapy planning
78 time
79 transmembrane potential
80 treatment
81 trouble
82 types
83 way
84 schema:name LBM-EP: Lattice-Boltzmann Method for Fast Cardiac Electrophysiology Simulation from 3D Images
85 schema:pagination 33-40
86 schema:productId N3f1c4a7129c6471caaafd2c1b69cd6e2
87 Nbc59428620854e9e9971ab58dd52d039
88 Nf703cf8cdb2a4b2a80268471efde57fd
89 schema:publisher N3acae853c2db485ea8413639d3d583e6
90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029658150
91 https://doi.org/10.1007/978-3-642-33418-4_5
92 schema:sdDatePublished 2022-01-01T19:26
93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
94 schema:sdPublisher N801afa6e5f834fce85556f8c5d9f9031
95 schema:url https://doi.org/10.1007/978-3-642-33418-4_5
96 sgo:license sg:explorer/license/
97 sgo:sdDataset chapters
98 rdf:type schema:Chapter
99 N008e40f82bdf43338ede9b1a65ec4ede rdf:first N8966426118c247c1bd063eccdbecc0d4
100 rdf:rest N83e0de804c6b4a1f929b52146226b1ee
101 N0d76a904e51d4998b57315843b86eac3 rdf:first sg:person.01217474726.73
102 rdf:rest Nb327d8fab8d34213b130e5d21f000da2
103 N0e6f392545354177888ddc18b7cff010 rdf:first sg:person.01165464466.13
104 rdf:rest N106a228d83144c9dba883817cb8967c7
105 N106a228d83144c9dba883817cb8967c7 rdf:first sg:person.01250665515.34
106 rdf:rest N987499af66e749db83d5af8d41e8c5dd
107 N118d8834ace34194b50260305339b5ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Image Interpretation, Computer-Assisted
109 rdf:type schema:DefinedTerm
110 N25acd9c5a45f45bd90187fe6413185a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Models, Cardiovascular
112 rdf:type schema:DefinedTerm
113 N274195eb316347358372275ed1c7c222 rdf:first sg:person.0754574330.21
114 rdf:rest N0d76a904e51d4998b57315843b86eac3
115 N38758d5a1b8c46f38eb342b401c93da8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Models, Anatomic
117 rdf:type schema:DefinedTerm
118 N38e8c9e265f24a9c87a94d1c5ae32d4a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Imaging, Three-Dimensional
120 rdf:type schema:DefinedTerm
121 N3acae853c2db485ea8413639d3d583e6 schema:name Springer Nature
122 rdf:type schema:Organisation
123 N3f1c4a7129c6471caaafd2c1b69cd6e2 schema:name doi
124 schema:value 10.1007/978-3-642-33418-4_5
125 rdf:type schema:PropertyValue
126 N801afa6e5f834fce85556f8c5d9f9031 schema:name Springer Nature - SN SciGraph project
127 rdf:type schema:Organization
128 N83e0de804c6b4a1f929b52146226b1ee rdf:first Nd489f7b80f114f6ca548545bf047246c
129 rdf:rest Ne0b91735a0244a8d96691ae7140b39d2
130 N8966426118c247c1bd063eccdbecc0d4 schema:familyName Ayache
131 schema:givenName Nicholas
132 rdf:type schema:Person
133 N987499af66e749db83d5af8d41e8c5dd rdf:first sg:person.0656777564.42
134 rdf:rest Nadd8234ba1234a9bb228e8f34c59f982
135 Nadd8234ba1234a9bb228e8f34c59f982 rdf:first sg:person.01066111014.77
136 rdf:rest rdf:nil
137 Nadeea72c8f8e46bb88e7e89d29e571b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Action Potentials
139 rdf:type schema:DefinedTerm
140 Naf576b3876664298b52238542833a83b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Humans
142 rdf:type schema:DefinedTerm
143 Nb327d8fab8d34213b130e5d21f000da2 rdf:first sg:person.0703547214.37
144 rdf:rest N0e6f392545354177888ddc18b7cff010
145 Nbb8445a1f6d4445cb3acedc5e73f5b1e schema:familyName Golland
146 schema:givenName Polina
147 rdf:type schema:Person
148 Nbc59428620854e9e9971ab58dd52d039 schema:name pubmed_id
149 schema:value 23286029
150 rdf:type schema:PropertyValue
151 Nc852d35e7d7a468a95bef75059a24ae1 rdf:first Nf9b0c451efaf4337baf17601a9e3c6f6
152 rdf:rest rdf:nil
153 Nd260fa5d11f44846835e5c6564804cf7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Magnetic Resonance Imaging
155 rdf:type schema:DefinedTerm
156 Nd489f7b80f114f6ca548545bf047246c schema:familyName Delingette
157 schema:givenName Hervé
158 rdf:type schema:Person
159 Ne019a5634af64f87a7e96fdaf70f7538 schema:isbn 978-3-642-33417-7
160 978-3-642-33418-4
161 schema:name Medical Image Computing and Computer-Assisted Intervention – MICCAI 2012
162 rdf:type schema:Book
163 Ne0b91735a0244a8d96691ae7140b39d2 rdf:first Nbb8445a1f6d4445cb3acedc5e73f5b1e
164 rdf:rest Nc852d35e7d7a468a95bef75059a24ae1
165 Nf703cf8cdb2a4b2a80268471efde57fd schema:name dimensions_id
166 schema:value pub.1029658150
167 rdf:type schema:PropertyValue
168 Nf7db722fedfb4586be09cd5b76cab075 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Heart Conduction System
170 rdf:type schema:DefinedTerm
171 Nf9b0c451efaf4337baf17601a9e3c6f6 schema:familyName Mori
172 schema:givenName Kensaku
173 rdf:type schema:Person
174 Nff2a35cb7a2b4a119973973cdc7065ec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Computer Simulation
176 rdf:type schema:DefinedTerm
177 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
178 schema:name Information and Computing Sciences
179 rdf:type schema:DefinedTerm
180 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
181 schema:name Artificial Intelligence and Image Processing
182 rdf:type schema:DefinedTerm
183 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
184 schema:name Medical and Health Sciences
185 rdf:type schema:DefinedTerm
186 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
187 schema:name Cardiorespiratory Medicine and Haematology
188 rdf:type schema:DefinedTerm
189 sg:person.01066111014.77 schema:affiliation grid-institutes:grid.419233.e
190 schema:familyName Comaniciu
191 schema:givenName Dorin
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77
193 rdf:type schema:Person
194 sg:person.01165464466.13 schema:affiliation grid-institutes:grid.17063.33
195 schema:familyName Pop
196 schema:givenName M.
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165464466.13
198 rdf:type schema:Person
199 sg:person.01217474726.73 schema:affiliation grid-institutes:grid.419233.e
200 schema:familyName Mansi
201 schema:givenName T.
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217474726.73
203 rdf:type schema:Person
204 sg:person.01250665515.34 schema:affiliation grid-institutes:grid.17063.33
205 schema:familyName Wright
206 schema:givenName G. A.
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250665515.34
208 rdf:type schema:Person
209 sg:person.0656777564.42 schema:affiliation grid-institutes:grid.419233.e
210 schema:familyName Kamen
211 schema:givenName A.
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656777564.42
213 rdf:type schema:Person
214 sg:person.0703547214.37 schema:affiliation grid-institutes:grid.419233.e
215 schema:familyName Georgescu
216 schema:givenName B.
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37
218 rdf:type schema:Person
219 sg:person.0754574330.21 schema:affiliation grid-institutes:grid.419233.e
220 schema:familyName Rapaka
221 schema:givenName S.
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754574330.21
223 rdf:type schema:Person
224 grid-institutes:grid.17063.33 schema:alternateName Department of Medical Biophysics, University of Toronto, Sunnybrook Health Sciences Centre, Imaging Research, Toronto, ON, Canada
225 schema:name Department of Medical Biophysics, University of Toronto, Sunnybrook Health Sciences Centre, Imaging Research, Toronto, ON, Canada
226 rdf:type schema:Organization
227 grid-institutes:grid.419233.e schema:alternateName Corporate Research and Technology, Imaging and Computer Vision, Siemens Corporation, Princeton, NJ, USA
228 schema:name Corporate Research and Technology, Imaging and Computer Vision, Siemens Corporation, Princeton, NJ, USA
229 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...