Geometry of Large Random Trees: SPDE Approximation View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013

AUTHORS

Yuri Bakhtin

ABSTRACT

In this chapter we present a point of view at large random trees. We study the geometry of large random rooted plane trees under Gibbs distributions with nearest neighbour interaction. In the first section of this chapter, we study the limiting behaviour of the trees as their size grows to infinity. We give results showing that the branching type statistics is deterministic in the limit, and the deviations from this law of large numbers follow a large deviation principle. Under the same limit, the distribution on finite trees converges to a distribution on infinite ones. These trees can be interpreted as realizations of a critical branching process conditioned on non-extinction. In the second section, we consider a natural embedding of the infinite tree into the two-dimensional Euclidean plane and obtain a scaling limit for this embedding. The geometry of the limiting object is of particular interest. It can be viewed as a stochastic foliation, a flow of monotone maps, or as a solution to a certain Stochastic PDE with respect to a Brownian sheet. We describe these points of view and discuss a natural connection with superprocesses. More... »

PAGES

399-420

References to SciGraph publications

Book

TITLE

Stochastic Geometry, Spatial Statistics and Random Fields

ISBN

978-3-642-33304-0
978-3-642-33305-7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-33305-7_12

DOI

http://dx.doi.org/10.1007/978-3-642-33305-7_12

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014185343


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Georgia Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.213917.f", 
          "name": [
            "Georgia Institute of Technology, Atlanta, GA\u00a030332, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bakhtin", 
        "givenName": "Yuri", 
        "id": "sg:person.01327752120.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327752120.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00440-010-0264-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000387165", 
          "https://doi.org/10.1007/s00440-010-0264-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10955-008-9540-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011452471", 
          "https://doi.org/10.1007/s10955-008-9540-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1014931860", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-62025-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014931860", 
          "https://doi.org/10.1007/978-3-642-62025-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-62025-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014931860", 
          "https://doi.org/10.1007/978-3-642-62025-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511662980.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021661605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11538-008-9353-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031192902", 
          "https://doi.org/10.1007/s11538-008-9353-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rsa.20317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035134117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rsa.20317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035134117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-4485-8_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041367265", 
          "https://doi.org/10.1007/978-94-011-4485-8_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-4485-8_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041367265", 
          "https://doi.org/10.1007/978-94-011-4485-8_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02773751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045424423", 
          "https://doi.org/10.1007/bf02773751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0308210500029619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054894643"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "In this chapter we present a point of view at large random trees. We study the geometry of large random rooted plane trees under Gibbs distributions with nearest neighbour interaction. In the first section of this chapter, we study the limiting behaviour of the trees as their size grows to infinity. We give results showing that the branching type statistics is deterministic in the limit, and the deviations from this law of large numbers follow a large deviation principle. Under the same limit, the distribution on finite trees converges to a distribution on infinite ones. These trees can be interpreted as realizations of a critical branching process conditioned on non-extinction. In the second section, we consider a natural embedding of the infinite tree into the two-dimensional Euclidean plane and obtain a scaling limit for this embedding. The geometry of the limiting object is of particular interest. It can be viewed as a stochastic foliation, a flow of monotone maps, or as a solution to a certain Stochastic PDE with respect to a Brownian sheet. We describe these points of view and discuss a natural connection with superprocesses.", 
    "editor": [
      {
        "familyName": "Spodarev", 
        "givenName": "Evgeny", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-33305-7_12", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-33304-0", 
        "978-3-642-33305-7"
      ], 
      "name": "Stochastic Geometry, Spatial Statistics and Random Fields", 
      "type": "Book"
    }, 
    "name": "Geometry of Large Random Trees: SPDE Approximation", 
    "pagination": "399-420", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-33305-7_12"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "43944bb168a2d499939914a4d9b88cfe1aa2e301f4bf9c1b83d39a88dc785d7b"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014185343"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-33305-7_12", 
      "https://app.dimensions.ai/details/publication/pub.1014185343"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T00:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000251.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-33305-7_12"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33305-7_12'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33305-7_12'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33305-7_12'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33305-7_12'


 

This table displays all metadata directly associated to this object as RDF triples.

100 TRIPLES      23 PREDICATES      37 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-33305-7_12 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Ne90316afa1574e4a9624a8493aff3a45
4 schema:citation sg:pub.10.1007/978-3-642-62025-6
5 sg:pub.10.1007/978-94-011-4485-8_2
6 sg:pub.10.1007/bf02773751
7 sg:pub.10.1007/s00440-010-0264-0
8 sg:pub.10.1007/s10955-008-9540-0
9 sg:pub.10.1007/s11538-008-9353-y
10 https://app.dimensions.ai/details/publication/pub.1014931860
11 https://doi.org/10.1002/rsa.20317
12 https://doi.org/10.1017/cbo9780511662980.003
13 https://doi.org/10.1017/s0308210500029619
14 schema:datePublished 2013
15 schema:datePublishedReg 2013-01-01
16 schema:description In this chapter we present a point of view at large random trees. We study the geometry of large random rooted plane trees under Gibbs distributions with nearest neighbour interaction. In the first section of this chapter, we study the limiting behaviour of the trees as their size grows to infinity. We give results showing that the branching type statistics is deterministic in the limit, and the deviations from this law of large numbers follow a large deviation principle. Under the same limit, the distribution on finite trees converges to a distribution on infinite ones. These trees can be interpreted as realizations of a critical branching process conditioned on non-extinction. In the second section, we consider a natural embedding of the infinite tree into the two-dimensional Euclidean plane and obtain a scaling limit for this embedding. The geometry of the limiting object is of particular interest. It can be viewed as a stochastic foliation, a flow of monotone maps, or as a solution to a certain Stochastic PDE with respect to a Brownian sheet. We describe these points of view and discuss a natural connection with superprocesses.
17 schema:editor N26d7cdb813ea48208c89ef572ca65d3d
18 schema:genre chapter
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N15ee3440b7b147afaafd4905a19c29f9
22 schema:name Geometry of Large Random Trees: SPDE Approximation
23 schema:pagination 399-420
24 schema:productId N0a89883c63494d2ab2b3ba4d571d91de
25 N51ce7f31ccca4979a485e291c231a9f3
26 Nfac36083c6d84dfb99cc7361b026995f
27 schema:publisher N26a5359153cf4192af9e2ab55283b696
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014185343
29 https://doi.org/10.1007/978-3-642-33305-7_12
30 schema:sdDatePublished 2019-04-16T00:47
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N457b4f319f5b4ff088ff7c3b57f25a6c
33 schema:url http://link.springer.com/10.1007/978-3-642-33305-7_12
34 sgo:license sg:explorer/license/
35 sgo:sdDataset chapters
36 rdf:type schema:Chapter
37 N0a89883c63494d2ab2b3ba4d571d91de schema:name doi
38 schema:value 10.1007/978-3-642-33305-7_12
39 rdf:type schema:PropertyValue
40 N0d688e89ee6347c4b41313fc5f127027 schema:familyName Spodarev
41 schema:givenName Evgeny
42 rdf:type schema:Person
43 N15ee3440b7b147afaafd4905a19c29f9 schema:isbn 978-3-642-33304-0
44 978-3-642-33305-7
45 schema:name Stochastic Geometry, Spatial Statistics and Random Fields
46 rdf:type schema:Book
47 N26a5359153cf4192af9e2ab55283b696 schema:location Berlin, Heidelberg
48 schema:name Springer Berlin Heidelberg
49 rdf:type schema:Organisation
50 N26d7cdb813ea48208c89ef572ca65d3d rdf:first N0d688e89ee6347c4b41313fc5f127027
51 rdf:rest rdf:nil
52 N457b4f319f5b4ff088ff7c3b57f25a6c schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N51ce7f31ccca4979a485e291c231a9f3 schema:name dimensions_id
55 schema:value pub.1014185343
56 rdf:type schema:PropertyValue
57 Ne90316afa1574e4a9624a8493aff3a45 rdf:first sg:person.01327752120.28
58 rdf:rest rdf:nil
59 Nfac36083c6d84dfb99cc7361b026995f schema:name readcube_id
60 schema:value 43944bb168a2d499939914a4d9b88cfe1aa2e301f4bf9c1b83d39a88dc785d7b
61 rdf:type schema:PropertyValue
62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
63 schema:name Mathematical Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
66 schema:name Statistics
67 rdf:type schema:DefinedTerm
68 sg:person.01327752120.28 schema:affiliation https://www.grid.ac/institutes/grid.213917.f
69 schema:familyName Bakhtin
70 schema:givenName Yuri
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327752120.28
72 rdf:type schema:Person
73 sg:pub.10.1007/978-3-642-62025-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014931860
74 https://doi.org/10.1007/978-3-642-62025-6
75 rdf:type schema:CreativeWork
76 sg:pub.10.1007/978-94-011-4485-8_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041367265
77 https://doi.org/10.1007/978-94-011-4485-8_2
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/bf02773751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045424423
80 https://doi.org/10.1007/bf02773751
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/s00440-010-0264-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000387165
83 https://doi.org/10.1007/s00440-010-0264-0
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/s10955-008-9540-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011452471
86 https://doi.org/10.1007/s10955-008-9540-0
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/s11538-008-9353-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1031192902
89 https://doi.org/10.1007/s11538-008-9353-y
90 rdf:type schema:CreativeWork
91 https://app.dimensions.ai/details/publication/pub.1014931860 schema:CreativeWork
92 https://doi.org/10.1002/rsa.20317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035134117
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1017/cbo9780511662980.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021661605
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1017/s0308210500029619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054894643
97 rdf:type schema:CreativeWork
98 https://www.grid.ac/institutes/grid.213917.f schema:alternateName Georgia Institute of Technology
99 schema:name Georgia Institute of Technology, Atlanta, GA 30332, USA
100 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...