Facial Expression Recognition Using Game Theory View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2012

AUTHORS

Kaushik Roy , Mohamed S. Kamel

ABSTRACT

Accurate detection of lip contour is important in many application areas, including biometric authentication, human computer interaction, and facial expression recognition. In this paper, we propose a new lip boundary localization scheme based on Game Theory (GT) to improve the facial expression detection performance. In addition, we use GT for selecting the proper set of facial features. We apply the Extended Contribution-Selection Algorithm (ECSA) for the dimensionality reduction of the facial features using a coalitional GT-based framework. We have conducted several sets of experiments to evaluate the proposed approach. The results show that the proposed approach has achieved recognition rates of 93.1% and 92.7% on the JAFFE and CK+ datasets, respectively. More... »

PAGES

139-150

References to SciGraph publications

  • 2004-05. Robust Real-Time Face Detection in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • Book

    TITLE

    Artificial Neural Networks in Pattern Recognition

    ISBN

    978-3-642-33211-1
    978-3-642-33212-8

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-642-33212-8_13

    DOI

    http://dx.doi.org/10.1007/978-3-642-33212-8_13

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1046150772


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Waterloo", 
              "id": "https://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "Centre for Pattern Analysis and Machine Intelligence, University of Waterloo, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Roy", 
            "givenName": "Kaushik", 
            "id": "sg:person.010511344303.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010511344303.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Waterloo", 
              "id": "https://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "Centre for Pattern Analysis and Machine Intelligence, University of Waterloo, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kamel", 
            "givenName": "Mohamed S.", 
            "id": "sg:person.01133760566.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133760566.26"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/b:visi.0000013087.49260.fb", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001944608", 
              "https://doi.org/10.1023/b:visi.0000013087.49260.fb"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/cviu.1995.1004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021804206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1201/9781584888796.ch16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033032755"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/neco.2007.19.7.1939", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040489781"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.engappai.2007.11.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041154176"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.imavis.2008.08.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047925989"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.745730", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061156899"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.817413", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061157036"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.841758", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061157057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2002.803121", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061694291"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5860/choice.27-0936", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073293339"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2005.213", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093984880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvprw.2010.5543262", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094866068"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icip.2010.5653112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094869502"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012", 
        "datePublishedReg": "2012-01-01", 
        "description": "Accurate detection of lip contour is important in many application areas, including biometric authentication, human computer interaction, and facial expression recognition. In this paper, we propose a new lip boundary localization scheme based on Game Theory (GT) to improve the facial expression detection performance. In addition, we use GT for selecting the proper set of facial features. We apply the Extended Contribution-Selection Algorithm (ECSA) for the dimensionality reduction of the facial features using a coalitional GT-based framework. We have conducted several sets of experiments to evaluate the proposed approach. The results show that the proposed approach has achieved recognition rates of 93.1% and 92.7% on the JAFFE and CK+ datasets, respectively.", 
        "editor": [
          {
            "familyName": "Mana", 
            "givenName": "Nadia", 
            "type": "Person"
          }, 
          {
            "familyName": "Schwenker", 
            "givenName": "Friedhelm", 
            "type": "Person"
          }, 
          {
            "familyName": "Trentin", 
            "givenName": "Edmondo", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-642-33212-8_13", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": {
          "isbn": [
            "978-3-642-33211-1", 
            "978-3-642-33212-8"
          ], 
          "name": "Artificial Neural Networks in Pattern Recognition", 
          "type": "Book"
        }, 
        "name": "Facial Expression Recognition Using Game Theory", 
        "pagination": "139-150", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-642-33212-8_13"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "dbd61f680c5840ca763cf318498f3952b134e1bd0076831e5c21ca6c966645b2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1046150772"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-642-33212-8_13", 
          "https://app.dimensions.ai/details/publication/pub.1046150772"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T22:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000272.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-642-33212-8_13"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33212-8_13'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33212-8_13'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33212-8_13'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33212-8_13'


     

    This table displays all metadata directly associated to this object as RDF triples.

    125 TRIPLES      23 PREDICATES      41 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-642-33212-8_13 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Nbbfa6339be704df6830c2da67111c8d2
    4 schema:citation sg:pub.10.1023/b:visi.0000013087.49260.fb
    5 https://doi.org/10.1006/cviu.1995.1004
    6 https://doi.org/10.1016/j.engappai.2007.11.010
    7 https://doi.org/10.1016/j.imavis.2008.08.005
    8 https://doi.org/10.1109/34.745730
    9 https://doi.org/10.1109/34.817413
    10 https://doi.org/10.1109/34.841758
    11 https://doi.org/10.1109/cvpr.2005.213
    12 https://doi.org/10.1109/cvprw.2010.5543262
    13 https://doi.org/10.1109/icip.2010.5653112
    14 https://doi.org/10.1109/tmi.2002.803121
    15 https://doi.org/10.1162/neco.2007.19.7.1939
    16 https://doi.org/10.1201/9781584888796.ch16
    17 https://doi.org/10.5860/choice.27-0936
    18 schema:datePublished 2012
    19 schema:datePublishedReg 2012-01-01
    20 schema:description Accurate detection of lip contour is important in many application areas, including biometric authentication, human computer interaction, and facial expression recognition. In this paper, we propose a new lip boundary localization scheme based on Game Theory (GT) to improve the facial expression detection performance. In addition, we use GT for selecting the proper set of facial features. We apply the Extended Contribution-Selection Algorithm (ECSA) for the dimensionality reduction of the facial features using a coalitional GT-based framework. We have conducted several sets of experiments to evaluate the proposed approach. The results show that the proposed approach has achieved recognition rates of 93.1% and 92.7% on the JAFFE and CK+ datasets, respectively.
    21 schema:editor N71a3e915ffca47ab8e1a176e04e8d072
    22 schema:genre chapter
    23 schema:inLanguage en
    24 schema:isAccessibleForFree true
    25 schema:isPartOf N8b236d53a403432eb576d6e602b00cd7
    26 schema:name Facial Expression Recognition Using Game Theory
    27 schema:pagination 139-150
    28 schema:productId N631d8c1401b244c0b986cca57cfb2942
    29 N69201810f4d04b3aa8061a738b7ed412
    30 N873009f714064a6bb28316211d0b19d5
    31 schema:publisher Ne30c0bbe1173450f866852ecdd4f24f4
    32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046150772
    33 https://doi.org/10.1007/978-3-642-33212-8_13
    34 schema:sdDatePublished 2019-04-15T22:01
    35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    36 schema:sdPublisher Nabf1222ab27e4a79a5851d454aa15755
    37 schema:url http://link.springer.com/10.1007/978-3-642-33212-8_13
    38 sgo:license sg:explorer/license/
    39 sgo:sdDataset chapters
    40 rdf:type schema:Chapter
    41 N2164ac1679d2448dbd98b08208c2dfe0 rdf:first Nf6bbe3aaf9a44537bf097cab74f5a90a
    42 rdf:rest rdf:nil
    43 N32f51ba545784127bd5366da8e8ef9f4 rdf:first sg:person.01133760566.26
    44 rdf:rest rdf:nil
    45 N537c9f12a60f4566b18fe7cd6b770a0a schema:familyName Schwenker
    46 schema:givenName Friedhelm
    47 rdf:type schema:Person
    48 N631d8c1401b244c0b986cca57cfb2942 schema:name doi
    49 schema:value 10.1007/978-3-642-33212-8_13
    50 rdf:type schema:PropertyValue
    51 N69201810f4d04b3aa8061a738b7ed412 schema:name dimensions_id
    52 schema:value pub.1046150772
    53 rdf:type schema:PropertyValue
    54 N71a3e915ffca47ab8e1a176e04e8d072 rdf:first Nd8d90146c4874e8a8fe1fdece59c8ed7
    55 rdf:rest Nac339e9d643f44f992282453334be72b
    56 N873009f714064a6bb28316211d0b19d5 schema:name readcube_id
    57 schema:value dbd61f680c5840ca763cf318498f3952b134e1bd0076831e5c21ca6c966645b2
    58 rdf:type schema:PropertyValue
    59 N8b236d53a403432eb576d6e602b00cd7 schema:isbn 978-3-642-33211-1
    60 978-3-642-33212-8
    61 schema:name Artificial Neural Networks in Pattern Recognition
    62 rdf:type schema:Book
    63 Nabf1222ab27e4a79a5851d454aa15755 schema:name Springer Nature - SN SciGraph project
    64 rdf:type schema:Organization
    65 Nac339e9d643f44f992282453334be72b rdf:first N537c9f12a60f4566b18fe7cd6b770a0a
    66 rdf:rest N2164ac1679d2448dbd98b08208c2dfe0
    67 Nbbfa6339be704df6830c2da67111c8d2 rdf:first sg:person.010511344303.36
    68 rdf:rest N32f51ba545784127bd5366da8e8ef9f4
    69 Nd8d90146c4874e8a8fe1fdece59c8ed7 schema:familyName Mana
    70 schema:givenName Nadia
    71 rdf:type schema:Person
    72 Ne30c0bbe1173450f866852ecdd4f24f4 schema:location Berlin, Heidelberg
    73 schema:name Springer Berlin Heidelberg
    74 rdf:type schema:Organisation
    75 Nf6bbe3aaf9a44537bf097cab74f5a90a schema:familyName Trentin
    76 schema:givenName Edmondo
    77 rdf:type schema:Person
    78 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Information and Computing Sciences
    80 rdf:type schema:DefinedTerm
    81 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Artificial Intelligence and Image Processing
    83 rdf:type schema:DefinedTerm
    84 sg:person.010511344303.36 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
    85 schema:familyName Roy
    86 schema:givenName Kaushik
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010511344303.36
    88 rdf:type schema:Person
    89 sg:person.01133760566.26 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
    90 schema:familyName Kamel
    91 schema:givenName Mohamed S.
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133760566.26
    93 rdf:type schema:Person
    94 sg:pub.10.1023/b:visi.0000013087.49260.fb schema:sameAs https://app.dimensions.ai/details/publication/pub.1001944608
    95 https://doi.org/10.1023/b:visi.0000013087.49260.fb
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1006/cviu.1995.1004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021804206
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1016/j.engappai.2007.11.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041154176
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1016/j.imavis.2008.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047925989
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1109/34.745730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156899
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1109/34.817413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157036
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1109/34.841758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157057
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1109/cvpr.2005.213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093984880
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1109/cvprw.2010.5543262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094866068
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1109/icip.2010.5653112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094869502
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1109/tmi.2002.803121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694291
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1162/neco.2007.19.7.1939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040489781
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1201/9781584888796.ch16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033032755
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.5860/choice.27-0936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073293339
    122 rdf:type schema:CreativeWork
    123 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
    124 schema:name Centre for Pattern Analysis and Machine Intelligence, University of Waterloo, ON, Canada
    125 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...