Facial Expression Recognition Using Game Theory View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2012

AUTHORS

Kaushik Roy , Mohamed S. Kamel

ABSTRACT

Accurate detection of lip contour is important in many application areas, including biometric authentication, human computer interaction, and facial expression recognition. In this paper, we propose a new lip boundary localization scheme based on Game Theory (GT) to improve the facial expression detection performance. In addition, we use GT for selecting the proper set of facial features. We apply the Extended Contribution-Selection Algorithm (ECSA) for the dimensionality reduction of the facial features using a coalitional GT-based framework. We have conducted several sets of experiments to evaluate the proposed approach. The results show that the proposed approach has achieved recognition rates of 93.1% and 92.7% on the JAFFE and CK+ datasets, respectively. More... »

PAGES

139-150

Book

TITLE

Artificial Neural Networks in Pattern Recognition

ISBN

978-3-642-33211-1
978-3-642-33212-8

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-33212-8_13

DOI

http://dx.doi.org/10.1007/978-3-642-33212-8_13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046150772


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Centre for Pattern Analysis and Machine Intelligence, University of Waterloo, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roy", 
        "givenName": "Kaushik", 
        "id": "sg:person.010511344303.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010511344303.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Centre for Pattern Analysis and Machine Intelligence, University of Waterloo, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kamel", 
        "givenName": "Mohamed S.", 
        "id": "sg:person.01133760566.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133760566.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/b:visi.0000013087.49260.fb", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001944608", 
          "https://doi.org/10.1023/b:visi.0000013087.49260.fb"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/cviu.1995.1004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021804206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781584888796.ch16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033032755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.2007.19.7.1939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040489781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engappai.2007.11.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041154176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.imavis.2008.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047925989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.745730", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.817413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061157036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.841758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061157057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2002.803121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061694291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5860/choice.27-0936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073293339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2005.213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093984880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvprw.2010.5543262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094866068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2010.5653112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094869502"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "Accurate detection of lip contour is important in many application areas, including biometric authentication, human computer interaction, and facial expression recognition. In this paper, we propose a new lip boundary localization scheme based on Game Theory (GT) to improve the facial expression detection performance. In addition, we use GT for selecting the proper set of facial features. We apply the Extended Contribution-Selection Algorithm (ECSA) for the dimensionality reduction of the facial features using a coalitional GT-based framework. We have conducted several sets of experiments to evaluate the proposed approach. The results show that the proposed approach has achieved recognition rates of 93.1% and 92.7% on the JAFFE and CK+ datasets, respectively.", 
    "editor": [
      {
        "familyName": "Mana", 
        "givenName": "Nadia", 
        "type": "Person"
      }, 
      {
        "familyName": "Schwenker", 
        "givenName": "Friedhelm", 
        "type": "Person"
      }, 
      {
        "familyName": "Trentin", 
        "givenName": "Edmondo", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-33212-8_13", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-33211-1", 
        "978-3-642-33212-8"
      ], 
      "name": "Artificial Neural Networks in Pattern Recognition", 
      "type": "Book"
    }, 
    "name": "Facial Expression Recognition Using Game Theory", 
    "pagination": "139-150", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-33212-8_13"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dbd61f680c5840ca763cf318498f3952b134e1bd0076831e5c21ca6c966645b2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046150772"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-33212-8_13", 
      "https://app.dimensions.ai/details/publication/pub.1046150772"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T22:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000272.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-33212-8_13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33212-8_13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33212-8_13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33212-8_13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33212-8_13'


 

This table displays all metadata directly associated to this object as RDF triples.

125 TRIPLES      23 PREDICATES      41 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-33212-8_13 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N7225d414b2a24c29bfacac77a4b2cc4f
4 schema:citation sg:pub.10.1023/b:visi.0000013087.49260.fb
5 https://doi.org/10.1006/cviu.1995.1004
6 https://doi.org/10.1016/j.engappai.2007.11.010
7 https://doi.org/10.1016/j.imavis.2008.08.005
8 https://doi.org/10.1109/34.745730
9 https://doi.org/10.1109/34.817413
10 https://doi.org/10.1109/34.841758
11 https://doi.org/10.1109/cvpr.2005.213
12 https://doi.org/10.1109/cvprw.2010.5543262
13 https://doi.org/10.1109/icip.2010.5653112
14 https://doi.org/10.1109/tmi.2002.803121
15 https://doi.org/10.1162/neco.2007.19.7.1939
16 https://doi.org/10.1201/9781584888796.ch16
17 https://doi.org/10.5860/choice.27-0936
18 schema:datePublished 2012
19 schema:datePublishedReg 2012-01-01
20 schema:description Accurate detection of lip contour is important in many application areas, including biometric authentication, human computer interaction, and facial expression recognition. In this paper, we propose a new lip boundary localization scheme based on Game Theory (GT) to improve the facial expression detection performance. In addition, we use GT for selecting the proper set of facial features. We apply the Extended Contribution-Selection Algorithm (ECSA) for the dimensionality reduction of the facial features using a coalitional GT-based framework. We have conducted several sets of experiments to evaluate the proposed approach. The results show that the proposed approach has achieved recognition rates of 93.1% and 92.7% on the JAFFE and CK+ datasets, respectively.
21 schema:editor Nf6817f7588ab4e078b60337be3f1a6c9
22 schema:genre chapter
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf N158ef50c9a954cc099f5998e19a060f6
26 schema:name Facial Expression Recognition Using Game Theory
27 schema:pagination 139-150
28 schema:productId N10d8ccdabc3d446eb47d77261610005d
29 Naa167ed00d14409e809415338d6e1a98
30 Ned4c5f24d6ed4d93820957759a4b4f46
31 schema:publisher N6b7b5c94f1e043d78ac22674ada49128
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046150772
33 https://doi.org/10.1007/978-3-642-33212-8_13
34 schema:sdDatePublished 2019-04-15T22:01
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N4de53514db1a4196bad958a51b5a77f2
37 schema:url http://link.springer.com/10.1007/978-3-642-33212-8_13
38 sgo:license sg:explorer/license/
39 sgo:sdDataset chapters
40 rdf:type schema:Chapter
41 N10d8ccdabc3d446eb47d77261610005d schema:name readcube_id
42 schema:value dbd61f680c5840ca763cf318498f3952b134e1bd0076831e5c21ca6c966645b2
43 rdf:type schema:PropertyValue
44 N158ef50c9a954cc099f5998e19a060f6 schema:isbn 978-3-642-33211-1
45 978-3-642-33212-8
46 schema:name Artificial Neural Networks in Pattern Recognition
47 rdf:type schema:Book
48 N15eaecc02c30458987ede6681d08eb36 schema:familyName Schwenker
49 schema:givenName Friedhelm
50 rdf:type schema:Person
51 N4de53514db1a4196bad958a51b5a77f2 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N5d2649ae190b4149b376b5f1ffc1f998 schema:familyName Mana
54 schema:givenName Nadia
55 rdf:type schema:Person
56 N6b7b5c94f1e043d78ac22674ada49128 schema:location Berlin, Heidelberg
57 schema:name Springer Berlin Heidelberg
58 rdf:type schema:Organisation
59 N7225d414b2a24c29bfacac77a4b2cc4f rdf:first sg:person.010511344303.36
60 rdf:rest Nef67ca8df9f3493fb242ebb73222c462
61 Naa167ed00d14409e809415338d6e1a98 schema:name dimensions_id
62 schema:value pub.1046150772
63 rdf:type schema:PropertyValue
64 Naefd17b2bc764deaa4e6ab7a9af6c29d rdf:first Nd92fa802bc154eebb0f7dc4e536e698e
65 rdf:rest rdf:nil
66 Nd92fa802bc154eebb0f7dc4e536e698e schema:familyName Trentin
67 schema:givenName Edmondo
68 rdf:type schema:Person
69 Ned4c5f24d6ed4d93820957759a4b4f46 schema:name doi
70 schema:value 10.1007/978-3-642-33212-8_13
71 rdf:type schema:PropertyValue
72 Nef67ca8df9f3493fb242ebb73222c462 rdf:first sg:person.01133760566.26
73 rdf:rest rdf:nil
74 Nf6817f7588ab4e078b60337be3f1a6c9 rdf:first N5d2649ae190b4149b376b5f1ffc1f998
75 rdf:rest Nf9a105bfa37a4959b62c21076eb25740
76 Nf9a105bfa37a4959b62c21076eb25740 rdf:first N15eaecc02c30458987ede6681d08eb36
77 rdf:rest Naefd17b2bc764deaa4e6ab7a9af6c29d
78 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
79 schema:name Information and Computing Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
82 schema:name Artificial Intelligence and Image Processing
83 rdf:type schema:DefinedTerm
84 sg:person.010511344303.36 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
85 schema:familyName Roy
86 schema:givenName Kaushik
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010511344303.36
88 rdf:type schema:Person
89 sg:person.01133760566.26 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
90 schema:familyName Kamel
91 schema:givenName Mohamed S.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133760566.26
93 rdf:type schema:Person
94 sg:pub.10.1023/b:visi.0000013087.49260.fb schema:sameAs https://app.dimensions.ai/details/publication/pub.1001944608
95 https://doi.org/10.1023/b:visi.0000013087.49260.fb
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1006/cviu.1995.1004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021804206
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/j.engappai.2007.11.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041154176
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.imavis.2008.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047925989
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1109/34.745730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156899
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1109/34.817413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157036
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1109/34.841758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157057
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1109/cvpr.2005.213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093984880
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1109/cvprw.2010.5543262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094866068
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1109/icip.2010.5653112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094869502
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1109/tmi.2002.803121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694291
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1162/neco.2007.19.7.1939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040489781
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1201/9781584888796.ch16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033032755
120 rdf:type schema:CreativeWork
121 https://doi.org/10.5860/choice.27-0936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073293339
122 rdf:type schema:CreativeWork
123 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
124 schema:name Centre for Pattern Analysis and Machine Intelligence, University of Waterloo, ON, Canada
125 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...