Facial Expression Recognition Using Game Theory View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2012

AUTHORS

Kaushik Roy , Mohamed S. Kamel

ABSTRACT

Accurate detection of lip contour is important in many application areas, including biometric authentication, human computer interaction, and facial expression recognition. In this paper, we propose a new lip boundary localization scheme based on Game Theory (GT) to improve the facial expression detection performance. In addition, we use GT for selecting the proper set of facial features. We apply the Extended Contribution-Selection Algorithm (ECSA) for the dimensionality reduction of the facial features using a coalitional GT-based framework. We have conducted several sets of experiments to evaluate the proposed approach. The results show that the proposed approach has achieved recognition rates of 93.1% and 92.7% on the JAFFE and CK+ datasets, respectively. More... »

PAGES

139-150

References to SciGraph publications

  • 2004-05. Robust Real-Time Face Detection in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • Book

    TITLE

    Artificial Neural Networks in Pattern Recognition

    ISBN

    978-3-642-33211-1
    978-3-642-33212-8

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-642-33212-8_13

    DOI

    http://dx.doi.org/10.1007/978-3-642-33212-8_13

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1046150772


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Waterloo", 
              "id": "https://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "Centre for Pattern Analysis and Machine Intelligence, University of Waterloo, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Roy", 
            "givenName": "Kaushik", 
            "id": "sg:person.010511344303.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010511344303.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Waterloo", 
              "id": "https://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "Centre for Pattern Analysis and Machine Intelligence, University of Waterloo, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kamel", 
            "givenName": "Mohamed S.", 
            "id": "sg:person.01133760566.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133760566.26"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/b:visi.0000013087.49260.fb", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001944608", 
              "https://doi.org/10.1023/b:visi.0000013087.49260.fb"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/cviu.1995.1004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021804206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1201/9781584888796.ch16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033032755"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/neco.2007.19.7.1939", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040489781"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.engappai.2007.11.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041154176"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.imavis.2008.08.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047925989"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.745730", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061156899"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.817413", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061157036"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.841758", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061157057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2002.803121", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061694291"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5860/choice.27-0936", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073293339"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2005.213", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093984880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvprw.2010.5543262", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094866068"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icip.2010.5653112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094869502"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012", 
        "datePublishedReg": "2012-01-01", 
        "description": "Accurate detection of lip contour is important in many application areas, including biometric authentication, human computer interaction, and facial expression recognition. In this paper, we propose a new lip boundary localization scheme based on Game Theory (GT) to improve the facial expression detection performance. In addition, we use GT for selecting the proper set of facial features. We apply the Extended Contribution-Selection Algorithm (ECSA) for the dimensionality reduction of the facial features using a coalitional GT-based framework. We have conducted several sets of experiments to evaluate the proposed approach. The results show that the proposed approach has achieved recognition rates of 93.1% and 92.7% on the JAFFE and CK+ datasets, respectively.", 
        "editor": [
          {
            "familyName": "Mana", 
            "givenName": "Nadia", 
            "type": "Person"
          }, 
          {
            "familyName": "Schwenker", 
            "givenName": "Friedhelm", 
            "type": "Person"
          }, 
          {
            "familyName": "Trentin", 
            "givenName": "Edmondo", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-642-33212-8_13", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": {
          "isbn": [
            "978-3-642-33211-1", 
            "978-3-642-33212-8"
          ], 
          "name": "Artificial Neural Networks in Pattern Recognition", 
          "type": "Book"
        }, 
        "name": "Facial Expression Recognition Using Game Theory", 
        "pagination": "139-150", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-642-33212-8_13"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "dbd61f680c5840ca763cf318498f3952b134e1bd0076831e5c21ca6c966645b2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1046150772"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-642-33212-8_13", 
          "https://app.dimensions.ai/details/publication/pub.1046150772"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T22:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000272.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-642-33212-8_13"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33212-8_13'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33212-8_13'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33212-8_13'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33212-8_13'


     

    This table displays all metadata directly associated to this object as RDF triples.

    125 TRIPLES      23 PREDICATES      41 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-642-33212-8_13 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N67674b7455284faa912c16565d2c9bca
    4 schema:citation sg:pub.10.1023/b:visi.0000013087.49260.fb
    5 https://doi.org/10.1006/cviu.1995.1004
    6 https://doi.org/10.1016/j.engappai.2007.11.010
    7 https://doi.org/10.1016/j.imavis.2008.08.005
    8 https://doi.org/10.1109/34.745730
    9 https://doi.org/10.1109/34.817413
    10 https://doi.org/10.1109/34.841758
    11 https://doi.org/10.1109/cvpr.2005.213
    12 https://doi.org/10.1109/cvprw.2010.5543262
    13 https://doi.org/10.1109/icip.2010.5653112
    14 https://doi.org/10.1109/tmi.2002.803121
    15 https://doi.org/10.1162/neco.2007.19.7.1939
    16 https://doi.org/10.1201/9781584888796.ch16
    17 https://doi.org/10.5860/choice.27-0936
    18 schema:datePublished 2012
    19 schema:datePublishedReg 2012-01-01
    20 schema:description Accurate detection of lip contour is important in many application areas, including biometric authentication, human computer interaction, and facial expression recognition. In this paper, we propose a new lip boundary localization scheme based on Game Theory (GT) to improve the facial expression detection performance. In addition, we use GT for selecting the proper set of facial features. We apply the Extended Contribution-Selection Algorithm (ECSA) for the dimensionality reduction of the facial features using a coalitional GT-based framework. We have conducted several sets of experiments to evaluate the proposed approach. The results show that the proposed approach has achieved recognition rates of 93.1% and 92.7% on the JAFFE and CK+ datasets, respectively.
    21 schema:editor Nc48d38ef1d6141758ab2681c4f2b7a57
    22 schema:genre chapter
    23 schema:inLanguage en
    24 schema:isAccessibleForFree true
    25 schema:isPartOf N8a607935686844da827b674d99121db1
    26 schema:name Facial Expression Recognition Using Game Theory
    27 schema:pagination 139-150
    28 schema:productId N386fe5c18fca47149377258f4614b33f
    29 N4868987ccd974974a6e59aef58694b6d
    30 Nd8c981d32cc540b88a2cdc6987b6490e
    31 schema:publisher N7aa8564253c8467ea481e253336e3f81
    32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046150772
    33 https://doi.org/10.1007/978-3-642-33212-8_13
    34 schema:sdDatePublished 2019-04-15T22:01
    35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    36 schema:sdPublisher N65f81a905d6f4a8f959545f08f335e64
    37 schema:url http://link.springer.com/10.1007/978-3-642-33212-8_13
    38 sgo:license sg:explorer/license/
    39 sgo:sdDataset chapters
    40 rdf:type schema:Chapter
    41 N05edeb9c88c84cd097bcce48baf8aac2 rdf:first Nd630874f7d7d4f729237c9b4ed270f9e
    42 rdf:rest rdf:nil
    43 N386fe5c18fca47149377258f4614b33f schema:name dimensions_id
    44 schema:value pub.1046150772
    45 rdf:type schema:PropertyValue
    46 N4420ac9c8cd74a229d0b81da6150f362 rdf:first Nb0a3e4ec4f764b9e9ec76ab500f84602
    47 rdf:rest N05edeb9c88c84cd097bcce48baf8aac2
    48 N4868987ccd974974a6e59aef58694b6d schema:name readcube_id
    49 schema:value dbd61f680c5840ca763cf318498f3952b134e1bd0076831e5c21ca6c966645b2
    50 rdf:type schema:PropertyValue
    51 N65f81a905d6f4a8f959545f08f335e64 schema:name Springer Nature - SN SciGraph project
    52 rdf:type schema:Organization
    53 N67674b7455284faa912c16565d2c9bca rdf:first sg:person.010511344303.36
    54 rdf:rest Ne1d31e6e57b84f5bb021169429adfaa0
    55 N7aa8564253c8467ea481e253336e3f81 schema:location Berlin, Heidelberg
    56 schema:name Springer Berlin Heidelberg
    57 rdf:type schema:Organisation
    58 N8a607935686844da827b674d99121db1 schema:isbn 978-3-642-33211-1
    59 978-3-642-33212-8
    60 schema:name Artificial Neural Networks in Pattern Recognition
    61 rdf:type schema:Book
    62 Nad5b13c4ab3043e7aa609b7ce1365366 schema:familyName Mana
    63 schema:givenName Nadia
    64 rdf:type schema:Person
    65 Nb0a3e4ec4f764b9e9ec76ab500f84602 schema:familyName Schwenker
    66 schema:givenName Friedhelm
    67 rdf:type schema:Person
    68 Nc48d38ef1d6141758ab2681c4f2b7a57 rdf:first Nad5b13c4ab3043e7aa609b7ce1365366
    69 rdf:rest N4420ac9c8cd74a229d0b81da6150f362
    70 Nd630874f7d7d4f729237c9b4ed270f9e schema:familyName Trentin
    71 schema:givenName Edmondo
    72 rdf:type schema:Person
    73 Nd8c981d32cc540b88a2cdc6987b6490e schema:name doi
    74 schema:value 10.1007/978-3-642-33212-8_13
    75 rdf:type schema:PropertyValue
    76 Ne1d31e6e57b84f5bb021169429adfaa0 rdf:first sg:person.01133760566.26
    77 rdf:rest rdf:nil
    78 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Information and Computing Sciences
    80 rdf:type schema:DefinedTerm
    81 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Artificial Intelligence and Image Processing
    83 rdf:type schema:DefinedTerm
    84 sg:person.010511344303.36 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
    85 schema:familyName Roy
    86 schema:givenName Kaushik
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010511344303.36
    88 rdf:type schema:Person
    89 sg:person.01133760566.26 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
    90 schema:familyName Kamel
    91 schema:givenName Mohamed S.
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133760566.26
    93 rdf:type schema:Person
    94 sg:pub.10.1023/b:visi.0000013087.49260.fb schema:sameAs https://app.dimensions.ai/details/publication/pub.1001944608
    95 https://doi.org/10.1023/b:visi.0000013087.49260.fb
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1006/cviu.1995.1004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021804206
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1016/j.engappai.2007.11.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041154176
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1016/j.imavis.2008.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047925989
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1109/34.745730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156899
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1109/34.817413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157036
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1109/34.841758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157057
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1109/cvpr.2005.213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093984880
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1109/cvprw.2010.5543262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094866068
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1109/icip.2010.5653112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094869502
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1109/tmi.2002.803121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694291
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1162/neco.2007.19.7.1939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040489781
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1201/9781584888796.ch16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033032755
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.5860/choice.27-0936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073293339
    122 rdf:type schema:CreativeWork
    123 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
    124 schema:name Centre for Pattern Analysis and Machine Intelligence, University of Waterloo, ON, Canada
    125 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...