How Accurately Can We Model Protein Structures with Dihedral Angles? View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2012

AUTHORS

Xuefeng Cui , Shuai Cheng Li , Dongbo Bu , Babak Alipanahi Ramandi , Ming Li

ABSTRACT

Previous study shows that the same type of bond lengths and angles fit Gaussian distributions well with small standard deviations on high resolution protein structure data. The mean values of these Gaussian distributions have been widely used as ideal bond lengths and angles in bioinformatics. However, we are not aware of any research work done to evaluate how accurately we can model protein structures with dihedral angles and ideal bond lengths and angles. In this paper, we first introduce the protein structure idealization problem. Then, we develop a fast O(nm / ε) dynamic programming algorithm to find an approximately optimal idealized protein backbone structure according to our scoring function. Consequently, we demonstrate that idealized backbone structures always exist with small changes and significantly better free energy. We also apply our algorithm to refine protein pseudo-structures determined in NMR experiments. More... »

PAGES

274-287

References to SciGraph publications

Book

TITLE

Algorithms in Bioinformatics

ISBN

978-3-642-33121-3
978-3-642-33122-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-33122-0_22

DOI

http://dx.doi.org/10.1007/978-3-642-33122-0_22

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000841808


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "University of Waterloo, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cui", 
        "givenName": "Xuefeng", 
        "id": "sg:person.0743012711.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743012711.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "City University of Hong Kong", 
          "id": "https://www.grid.ac/institutes/grid.35030.35", 
          "name": [
            "City University of Hong Kong, Hong Kong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Shuai Cheng", 
        "id": "sg:person.01314123720.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314123720.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.9227.e", 
          "name": [
            "Chinese Academy of Sciences, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bu", 
        "givenName": "Dongbo", 
        "id": "sg:person.01137000414.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137000414.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "University of Waterloo, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ramandi", 
        "givenName": "Babak Alipanahi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "University of Waterloo, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Ming", 
        "id": "sg:person.0621576316.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621576316.79"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1107/s0021889892009944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003451988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1097-0134(20000815)40:3<343::aid-prot10>3.0.co;2-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005952156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.2000.4459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006368737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008954967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1997.1284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011642887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1997.0959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011896927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/protein/gzg081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018746875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.22488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019181069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.22488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019181069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02192866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020727475", 
          "https://doi.org/10.1007/bf02192866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02192866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020727475", 
          "https://doi.org/10.1007/bf02192866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1110/ps.036442.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023059483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.340190403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027941628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.340190403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027941628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030521598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5483/bmbrep.2005.38.5.550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032820852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/28.1.235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035055456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmre.1996.1027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035342201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11415770_32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035348483", 
          "https://doi.org/10.1007/11415770_32"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11415770_32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035348483", 
          "https://doi.org/10.1007/11415770_32"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0108767391001071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036464667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.21968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039934588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s090744490700978x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040451335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pro.5560060807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042933715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s090744490604604x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043491637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/381272a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044595902", 
          "https://doi.org/10.1038/381272a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1110/ps.033480.107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046149895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btr590", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048177582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmre.1997.1116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048754314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1110/ps.03154503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050369828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pro.5560050609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052000147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pro.5560050609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052000147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/csb.2005.9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077182617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/csb.2005.9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077182617"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "Previous study shows that the same type of bond lengths and angles fit Gaussian distributions well with small standard deviations on high resolution protein structure data. The mean values of these Gaussian distributions have been widely used as ideal bond lengths and angles in bioinformatics. However, we are not aware of any research work done to evaluate how accurately we can model protein structures with dihedral angles and ideal bond lengths and angles. In this paper, we first introduce the protein structure idealization problem. Then, we develop a fast O(nm / \u03b5) dynamic programming algorithm to find an approximately optimal idealized protein backbone structure according to our scoring function. Consequently, we demonstrate that idealized backbone structures always exist with small changes and significantly better free energy. We also apply our algorithm to refine protein pseudo-structures determined in NMR experiments.", 
    "editor": [
      {
        "familyName": "Raphael", 
        "givenName": "Ben", 
        "type": "Person"
      }, 
      {
        "familyName": "Tang", 
        "givenName": "Jijun", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-33122-0_22", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-33121-3", 
        "978-3-642-33122-0"
      ], 
      "name": "Algorithms in Bioinformatics", 
      "type": "Book"
    }, 
    "name": "How Accurately Can We Model Protein Structures with Dihedral Angles?", 
    "pagination": "274-287", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-33122-0_22"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "04027f5c1b93cfe5345834413c6721d7da4958a1fb750aa717b4e11e3e475499"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000841808"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-33122-0_22", 
      "https://app.dimensions.ai/details/publication/pub.1000841808"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T12:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000243.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-33122-0_22"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33122-0_22'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33122-0_22'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33122-0_22'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33122-0_22'


 

This table displays all metadata directly associated to this object as RDF triples.

190 TRIPLES      23 PREDICATES      55 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-33122-0_22 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N62f8a8cb8fb84aa48e79c7e7343f1741
4 schema:citation sg:pub.10.1007/11415770_32
5 sg:pub.10.1007/bf02192866
6 sg:pub.10.1038/381272a0
7 https://doi.org/10.1002/1097-0134(20000815)40:3<343::aid-prot10>3.0.co;2-s
8 https://doi.org/10.1002/pro.5560050609
9 https://doi.org/10.1002/pro.5560060807
10 https://doi.org/10.1002/prot.21968
11 https://doi.org/10.1002/prot.22488
12 https://doi.org/10.1002/prot.340190403
13 https://doi.org/10.1006/jmbi.1997.0959
14 https://doi.org/10.1006/jmbi.1997.1284
15 https://doi.org/10.1006/jmbi.2000.4459
16 https://doi.org/10.1006/jmre.1996.1027
17 https://doi.org/10.1006/jmre.1997.1116
18 https://doi.org/10.1093/bioinformatics/btg224
19 https://doi.org/10.1093/bioinformatics/btr590
20 https://doi.org/10.1093/nar/28.1.235
21 https://doi.org/10.1093/nar/gki402
22 https://doi.org/10.1093/protein/gzg081
23 https://doi.org/10.1107/s0021889892009944
24 https://doi.org/10.1107/s0108767391001071
25 https://doi.org/10.1107/s090744490604604x
26 https://doi.org/10.1107/s090744490700978x
27 https://doi.org/10.1109/csb.2005.9
28 https://doi.org/10.1110/ps.03154503
29 https://doi.org/10.1110/ps.033480.107
30 https://doi.org/10.1110/ps.036442.108
31 https://doi.org/10.5483/bmbrep.2005.38.5.550
32 schema:datePublished 2012
33 schema:datePublishedReg 2012-01-01
34 schema:description Previous study shows that the same type of bond lengths and angles fit Gaussian distributions well with small standard deviations on high resolution protein structure data. The mean values of these Gaussian distributions have been widely used as ideal bond lengths and angles in bioinformatics. However, we are not aware of any research work done to evaluate how accurately we can model protein structures with dihedral angles and ideal bond lengths and angles. In this paper, we first introduce the protein structure idealization problem. Then, we develop a fast O(nm / ε) dynamic programming algorithm to find an approximately optimal idealized protein backbone structure according to our scoring function. Consequently, we demonstrate that idealized backbone structures always exist with small changes and significantly better free energy. We also apply our algorithm to refine protein pseudo-structures determined in NMR experiments.
35 schema:editor N0ac95a6552ff4aacb3e1138e9f56ad35
36 schema:genre chapter
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf N5617bb1ef4cc45988a25c2894b7d921f
40 schema:name How Accurately Can We Model Protein Structures with Dihedral Angles?
41 schema:pagination 274-287
42 schema:productId N4def7fdd506d4fd380559971dd1e3ba1
43 Na4a4171409b4466ea0261d0fce7c393e
44 Nf1be2c11f6c1411aab542bf8a18269cf
45 schema:publisher Naf3a7012b93d453584791e0031da1e07
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000841808
47 https://doi.org/10.1007/978-3-642-33122-0_22
48 schema:sdDatePublished 2019-04-15T12:28
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N161a2295b9e046788c94d2d674dfdf3e
51 schema:url http://link.springer.com/10.1007/978-3-642-33122-0_22
52 sgo:license sg:explorer/license/
53 sgo:sdDataset chapters
54 rdf:type schema:Chapter
55 N0ac95a6552ff4aacb3e1138e9f56ad35 rdf:first N6e71faf0fa064aaa9a8f687ba2fb38c6
56 rdf:rest N38563a99639e49e597a3049edffcab5a
57 N0cd576322cba4afa955899353c8f325b schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
58 schema:familyName Ramandi
59 schema:givenName Babak Alipanahi
60 rdf:type schema:Person
61 N161a2295b9e046788c94d2d674dfdf3e schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N38563a99639e49e597a3049edffcab5a rdf:first Nf2d03af617da4cc1a3c45d3a4e9fe48d
64 rdf:rest rdf:nil
65 N4def7fdd506d4fd380559971dd1e3ba1 schema:name dimensions_id
66 schema:value pub.1000841808
67 rdf:type schema:PropertyValue
68 N5617bb1ef4cc45988a25c2894b7d921f schema:isbn 978-3-642-33121-3
69 978-3-642-33122-0
70 schema:name Algorithms in Bioinformatics
71 rdf:type schema:Book
72 N62f8a8cb8fb84aa48e79c7e7343f1741 rdf:first sg:person.0743012711.78
73 rdf:rest N86259a5994c448f593184e9754af7616
74 N6e71faf0fa064aaa9a8f687ba2fb38c6 schema:familyName Raphael
75 schema:givenName Ben
76 rdf:type schema:Person
77 N7b571ed39c0a465e871fa14c282d2157 rdf:first sg:person.0621576316.79
78 rdf:rest rdf:nil
79 N86259a5994c448f593184e9754af7616 rdf:first sg:person.01314123720.90
80 rdf:rest N8b967f491dc5485d99285b9b40ed3ddc
81 N88f4125f70bd497a860981c762ec6481 rdf:first N0cd576322cba4afa955899353c8f325b
82 rdf:rest N7b571ed39c0a465e871fa14c282d2157
83 N8b967f491dc5485d99285b9b40ed3ddc rdf:first sg:person.01137000414.40
84 rdf:rest N88f4125f70bd497a860981c762ec6481
85 Na4a4171409b4466ea0261d0fce7c393e schema:name doi
86 schema:value 10.1007/978-3-642-33122-0_22
87 rdf:type schema:PropertyValue
88 Naf3a7012b93d453584791e0031da1e07 schema:location Berlin, Heidelberg
89 schema:name Springer Berlin Heidelberg
90 rdf:type schema:Organisation
91 Nf1be2c11f6c1411aab542bf8a18269cf schema:name readcube_id
92 schema:value 04027f5c1b93cfe5345834413c6721d7da4958a1fb750aa717b4e11e3e475499
93 rdf:type schema:PropertyValue
94 Nf2d03af617da4cc1a3c45d3a4e9fe48d schema:familyName Tang
95 schema:givenName Jijun
96 rdf:type schema:Person
97 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
98 schema:name Physical Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
101 schema:name Other Physical Sciences
102 rdf:type schema:DefinedTerm
103 sg:person.01137000414.40 schema:affiliation https://www.grid.ac/institutes/grid.9227.e
104 schema:familyName Bu
105 schema:givenName Dongbo
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137000414.40
107 rdf:type schema:Person
108 sg:person.01314123720.90 schema:affiliation https://www.grid.ac/institutes/grid.35030.35
109 schema:familyName Li
110 schema:givenName Shuai Cheng
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314123720.90
112 rdf:type schema:Person
113 sg:person.0621576316.79 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
114 schema:familyName Li
115 schema:givenName Ming
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621576316.79
117 rdf:type schema:Person
118 sg:person.0743012711.78 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
119 schema:familyName Cui
120 schema:givenName Xuefeng
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743012711.78
122 rdf:type schema:Person
123 sg:pub.10.1007/11415770_32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035348483
124 https://doi.org/10.1007/11415770_32
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/bf02192866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020727475
127 https://doi.org/10.1007/bf02192866
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/381272a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044595902
130 https://doi.org/10.1038/381272a0
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1002/1097-0134(20000815)40:3<343::aid-prot10>3.0.co;2-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1005952156
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1002/pro.5560050609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052000147
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1002/pro.5560060807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042933715
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1002/prot.21968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039934588
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1002/prot.22488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019181069
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1002/prot.340190403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027941628
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1006/jmbi.1997.0959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011896927
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1006/jmbi.1997.1284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011642887
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1006/jmbi.2000.4459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006368737
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1006/jmre.1996.1027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035342201
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1006/jmre.1997.1116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048754314
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1093/bioinformatics/btg224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030521598
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1093/bioinformatics/btr590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048177582
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1093/nar/28.1.235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035055456
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1093/nar/gki402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008954967
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1093/protein/gzg081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018746875
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1107/s0021889892009944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003451988
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1107/s0108767391001071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036464667
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1107/s090744490604604x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043491637
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1107/s090744490700978x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040451335
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1109/csb.2005.9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077182617
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1110/ps.03154503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050369828
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1110/ps.033480.107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046149895
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1110/ps.036442.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023059483
179 rdf:type schema:CreativeWork
180 https://doi.org/10.5483/bmbrep.2005.38.5.550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032820852
181 rdf:type schema:CreativeWork
182 https://www.grid.ac/institutes/grid.35030.35 schema:alternateName City University of Hong Kong
183 schema:name City University of Hong Kong, Hong Kong, China
184 rdf:type schema:Organization
185 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
186 schema:name University of Waterloo, Ontario, Canada
187 rdf:type schema:Organization
188 https://www.grid.ac/institutes/grid.9227.e schema:alternateName Chinese Academy of Sciences
189 schema:name Chinese Academy of Sciences, Beijing, China
190 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...