Efficient Integration of External Information into Forecast Models from the Energy Domain View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2012

AUTHORS

Lars Dannecker , Elena Vasilyeva , Matthias Boehm , Wolfgang Lehner , Gregor Hackenbroich

ABSTRACT

Forecasting is an important analysis technique to support decisions and functionalities in many application domains. While the employed statistical models often provide a sufficient accuracy, recent developments pose new challenges to the forecasting process. Typically the available time for estimating the forecast models and providing accurate predictions is significantly decreasing. This is especially an issue in the energy domain, where forecast models often consider external influences to provide a high accuracy. As a result, these models exhibit a higher number of parameters, resulting in increased estimation efforts. Also, in the energy domain new measurements are constantly appended to the time series, requiring a continuous adaptation of the models to new developments. This typically involves a parameter re-estimation, which is often almost as expensive as the initial estimation, conflicting with the requirement for fast forecast computation. To address these challenges, we present a framework that allows a more efficient integration of external information. First, external information are handled in a separate model, because their linear and non-linear relationships are more stable and thus, they can be excluded from most forecast model adaptations. Second, we directly optimize the separate model using feature selection and dimension reduction techniques. Our evaluation shows that our approach allows an efficient integration of external information and thus, an increased forecasting accuracy, while reducing the re-estimation efforts. More... »

PAGES

139-152

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-33074-2_11

DOI

http://dx.doi.org/10.1007/978-3-642-33074-2_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038407625


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "SAP Research Dresden, Chemnitzer Str. 48, 01187, Dresden, Germany", 
          "id": "http://www.grid.ac/institutes/grid.19008.30", 
          "name": [
            "SAP Research Dresden, Chemnitzer Str. 48, 01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dannecker", 
        "givenName": "Lars", 
        "id": "sg:person.016070302115.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016070302115.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "SAP Research Dresden, Chemnitzer Str. 48, 01187, Dresden, Germany", 
          "id": "http://www.grid.ac/institutes/grid.19008.30", 
          "name": [
            "SAP Research Dresden, Chemnitzer Str. 48, 01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vasilyeva", 
        "givenName": "Elena", 
        "id": "sg:person.010324037464.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010324037464.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Database Technology Group, Technische Universit\u00e4t Dresden, N\u00f6thnitzer Str. 46, 01187, Dresden, Germany", 
          "id": "http://www.grid.ac/institutes/grid.4488.0", 
          "name": [
            "Database Technology Group, Technische Universit\u00e4t Dresden, N\u00f6thnitzer Str. 46, 01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boehm", 
        "givenName": "Matthias", 
        "id": "sg:person.010351262023.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010351262023.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Database Technology Group, Technische Universit\u00e4t Dresden, N\u00f6thnitzer Str. 46, 01187, Dresden, Germany", 
          "id": "http://www.grid.ac/institutes/grid.4488.0", 
          "name": [
            "Database Technology Group, Technische Universit\u00e4t Dresden, N\u00f6thnitzer Str. 46, 01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lehner", 
        "givenName": "Wolfgang", 
        "id": "sg:person.014174244741.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014174244741.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "SAP Research Dresden, Chemnitzer Str. 48, 01187, Dresden, Germany", 
          "id": "http://www.grid.ac/institutes/grid.19008.30", 
          "name": [
            "SAP Research Dresden, Chemnitzer Str. 48, 01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hackenbroich", 
        "givenName": "Gregor", 
        "id": "sg:person.012241057077.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012241057077.14"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "Forecasting is an important analysis technique to support decisions and functionalities in many application domains. While the employed statistical models often provide a sufficient accuracy, recent developments pose new challenges to the forecasting process. Typically the available time for estimating the forecast models and providing accurate predictions is significantly decreasing. This is especially an issue in the energy domain, where forecast models often consider external influences to provide a high accuracy. As a result, these models exhibit a higher number of parameters, resulting in increased estimation efforts. Also, in the energy domain new measurements are constantly appended to the time series, requiring a continuous adaptation of the models to new developments. This typically involves a parameter re-estimation, which is often almost as expensive as the initial estimation, conflicting with the requirement for fast forecast computation. To address these challenges, we present a framework that allows a more efficient integration of external information. First, external information are handled in a separate model, because their linear and non-linear relationships are more stable and thus, they can be excluded from most forecast model adaptations. Second, we directly optimize the separate model using feature selection and dimension reduction techniques. Our evaluation shows that our approach allows an efficient integration of external information and thus, an increased forecasting accuracy, while reducing the re-estimation efforts.", 
    "editor": [
      {
        "familyName": "Morzy", 
        "givenName": "Tadeusz", 
        "type": "Person"
      }, 
      {
        "familyName": "H\u00e4rder", 
        "givenName": "Theo", 
        "type": "Person"
      }, 
      {
        "familyName": "Wrembel", 
        "givenName": "Robert", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-33074-2_11", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-33073-5", 
        "978-3-642-33074-2"
      ], 
      "name": "Advances in Databases and Information Systems", 
      "type": "Book"
    }, 
    "keywords": [
      "employed statistical models", 
      "forecast model", 
      "dimension reduction techniques", 
      "statistical model", 
      "energy domain", 
      "important analysis technique", 
      "estimation efforts", 
      "forecasting accuracy", 
      "reduction techniques", 
      "non-linear relationship", 
      "initial estimation", 
      "forecasting process", 
      "sufficient accuracy", 
      "efficient integration", 
      "external information", 
      "separate models", 
      "time series", 
      "accurate prediction", 
      "high accuracy", 
      "analysis techniques", 
      "model", 
      "model adaptation", 
      "accuracy", 
      "new measurements", 
      "parameters", 
      "computation", 
      "feature selection", 
      "available time", 
      "estimation", 
      "forecasting", 
      "recent developments", 
      "application domains", 
      "decisions", 
      "external influences", 
      "technique", 
      "integration", 
      "domain", 
      "new developments", 
      "prediction", 
      "new challenges", 
      "framework", 
      "approach", 
      "energy", 
      "information", 
      "continuous adaptation", 
      "number", 
      "efforts", 
      "issues", 
      "measurements", 
      "development", 
      "results", 
      "relationship", 
      "selection", 
      "challenges", 
      "time", 
      "requirements", 
      "process", 
      "series", 
      "influence", 
      "higher number", 
      "evaluation", 
      "adaptation", 
      "functionality"
    ], 
    "name": "Efficient Integration of External Information into Forecast Models from the Energy Domain", 
    "pagination": "139-152", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038407625"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-33074-2_11"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-33074-2_11", 
      "https://app.dimensions.ai/details/publication/pub.1038407625"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_209.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-33074-2_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33074-2_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33074-2_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33074-2_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-33074-2_11'


 

This table displays all metadata directly associated to this object as RDF triples.

163 TRIPLES      22 PREDICATES      88 URIs      81 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-33074-2_11 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Na48dd1a88d6b4e368f371fe19016234e
4 schema:datePublished 2012
5 schema:datePublishedReg 2012-01-01
6 schema:description Forecasting is an important analysis technique to support decisions and functionalities in many application domains. While the employed statistical models often provide a sufficient accuracy, recent developments pose new challenges to the forecasting process. Typically the available time for estimating the forecast models and providing accurate predictions is significantly decreasing. This is especially an issue in the energy domain, where forecast models often consider external influences to provide a high accuracy. As a result, these models exhibit a higher number of parameters, resulting in increased estimation efforts. Also, in the energy domain new measurements are constantly appended to the time series, requiring a continuous adaptation of the models to new developments. This typically involves a parameter re-estimation, which is often almost as expensive as the initial estimation, conflicting with the requirement for fast forecast computation. To address these challenges, we present a framework that allows a more efficient integration of external information. First, external information are handled in a separate model, because their linear and non-linear relationships are more stable and thus, they can be excluded from most forecast model adaptations. Second, we directly optimize the separate model using feature selection and dimension reduction techniques. Our evaluation shows that our approach allows an efficient integration of external information and thus, an increased forecasting accuracy, while reducing the re-estimation efforts.
7 schema:editor Nded073872ddd49ae91e44e97f297e20d
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N80f8bf8434d043ffa9fbe5d03d618b82
11 schema:keywords accuracy
12 accurate prediction
13 adaptation
14 analysis techniques
15 application domains
16 approach
17 available time
18 challenges
19 computation
20 continuous adaptation
21 decisions
22 development
23 dimension reduction techniques
24 domain
25 efficient integration
26 efforts
27 employed statistical models
28 energy
29 energy domain
30 estimation
31 estimation efforts
32 evaluation
33 external influences
34 external information
35 feature selection
36 forecast model
37 forecasting
38 forecasting accuracy
39 forecasting process
40 framework
41 functionality
42 high accuracy
43 higher number
44 important analysis technique
45 influence
46 information
47 initial estimation
48 integration
49 issues
50 measurements
51 model
52 model adaptation
53 new challenges
54 new developments
55 new measurements
56 non-linear relationship
57 number
58 parameters
59 prediction
60 process
61 recent developments
62 reduction techniques
63 relationship
64 requirements
65 results
66 selection
67 separate models
68 series
69 statistical model
70 sufficient accuracy
71 technique
72 time
73 time series
74 schema:name Efficient Integration of External Information into Forecast Models from the Energy Domain
75 schema:pagination 139-152
76 schema:productId N257946811cd148b4b016391085f8449d
77 Na181fd2b4b504dafb0dcc72905c115a1
78 schema:publisher N8601cc3d5242464dbb797766caaa2edb
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038407625
80 https://doi.org/10.1007/978-3-642-33074-2_11
81 schema:sdDatePublished 2022-12-01T06:48
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher N57f0465a68064bcc93ce3f4b9b11ab2e
84 schema:url https://doi.org/10.1007/978-3-642-33074-2_11
85 sgo:license sg:explorer/license/
86 sgo:sdDataset chapters
87 rdf:type schema:Chapter
88 N0cd3f7097b2d4d96a834abb4a4f237ed schema:familyName Wrembel
89 schema:givenName Robert
90 rdf:type schema:Person
91 N0cf6338b0cce48de983f8c1f6ada9f2e rdf:first sg:person.010351262023.46
92 rdf:rest Nd0feb497959b43f3a245501e6ddec612
93 N110e02c9bfe347b4a65845ab9ad958ea rdf:first sg:person.012241057077.14
94 rdf:rest rdf:nil
95 N23ec643c6de64503b8e38b12fe377dea schema:familyName Härder
96 schema:givenName Theo
97 rdf:type schema:Person
98 N257946811cd148b4b016391085f8449d schema:name dimensions_id
99 schema:value pub.1038407625
100 rdf:type schema:PropertyValue
101 N2a36949c419a4d5a9fc0cd965c3345c1 rdf:first sg:person.010324037464.00
102 rdf:rest N0cf6338b0cce48de983f8c1f6ada9f2e
103 N57f0465a68064bcc93ce3f4b9b11ab2e schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 N65b9cab44a0e41dcb8e2f7f14ce274e2 schema:familyName Morzy
106 schema:givenName Tadeusz
107 rdf:type schema:Person
108 N80f8bf8434d043ffa9fbe5d03d618b82 schema:isbn 978-3-642-33073-5
109 978-3-642-33074-2
110 schema:name Advances in Databases and Information Systems
111 rdf:type schema:Book
112 N8601cc3d5242464dbb797766caaa2edb schema:name Springer Nature
113 rdf:type schema:Organisation
114 Na181fd2b4b504dafb0dcc72905c115a1 schema:name doi
115 schema:value 10.1007/978-3-642-33074-2_11
116 rdf:type schema:PropertyValue
117 Na48dd1a88d6b4e368f371fe19016234e rdf:first sg:person.016070302115.81
118 rdf:rest N2a36949c419a4d5a9fc0cd965c3345c1
119 Nc364881a0d7d4d91a8b39e55170d0b75 rdf:first N23ec643c6de64503b8e38b12fe377dea
120 rdf:rest Nc7700809a5a143efbae6fddfad6f1611
121 Nc7700809a5a143efbae6fddfad6f1611 rdf:first N0cd3f7097b2d4d96a834abb4a4f237ed
122 rdf:rest rdf:nil
123 Nd0feb497959b43f3a245501e6ddec612 rdf:first sg:person.014174244741.81
124 rdf:rest N110e02c9bfe347b4a65845ab9ad958ea
125 Nded073872ddd49ae91e44e97f297e20d rdf:first N65b9cab44a0e41dcb8e2f7f14ce274e2
126 rdf:rest Nc364881a0d7d4d91a8b39e55170d0b75
127 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
128 schema:name Mathematical Sciences
129 rdf:type schema:DefinedTerm
130 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
131 schema:name Statistics
132 rdf:type schema:DefinedTerm
133 sg:person.010324037464.00 schema:affiliation grid-institutes:grid.19008.30
134 schema:familyName Vasilyeva
135 schema:givenName Elena
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010324037464.00
137 rdf:type schema:Person
138 sg:person.010351262023.46 schema:affiliation grid-institutes:grid.4488.0
139 schema:familyName Boehm
140 schema:givenName Matthias
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010351262023.46
142 rdf:type schema:Person
143 sg:person.012241057077.14 schema:affiliation grid-institutes:grid.19008.30
144 schema:familyName Hackenbroich
145 schema:givenName Gregor
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012241057077.14
147 rdf:type schema:Person
148 sg:person.014174244741.81 schema:affiliation grid-institutes:grid.4488.0
149 schema:familyName Lehner
150 schema:givenName Wolfgang
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014174244741.81
152 rdf:type schema:Person
153 sg:person.016070302115.81 schema:affiliation grid-institutes:grid.19008.30
154 schema:familyName Dannecker
155 schema:givenName Lars
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016070302115.81
157 rdf:type schema:Person
158 grid-institutes:grid.19008.30 schema:alternateName SAP Research Dresden, Chemnitzer Str. 48, 01187, Dresden, Germany
159 schema:name SAP Research Dresden, Chemnitzer Str. 48, 01187, Dresden, Germany
160 rdf:type schema:Organization
161 grid-institutes:grid.4488.0 schema:alternateName Database Technology Group, Technische Universität Dresden, Nöthnitzer Str. 46, 01187, Dresden, Germany
162 schema:name Database Technology Group, Technische Universität Dresden, Nöthnitzer Str. 46, 01187, Dresden, Germany
163 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...