Exact Fluid Lumpability for Markovian Process Algebra View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2012

AUTHORS

Max Tschaikowski , Mirco Tribastone

ABSTRACT

We study behavioural relations for process algebra with a fluid semantics given in terms of a system of ordinary differential equations (ODEs). We introduce label equivalence, a relation which is shown to induce an exactly lumped fluid model, a potentially smaller ODE system which can be exactly related to the original one. We show that, in general, for two processes that are related in the fluid sense nothing can be said about their relationship from stochastic viewpoint. However, we identify a class of models for which label equivalence implies a correspondence, called semi-isomorphism, between their transition systems that are at the basis of the Markovian interpretation. More... »

PAGES

380-394

References to SciGraph publications

  • 2009. Dynamical Systems and Stochastic Programming: To Ordinary Differential Equations and Back in TRANSACTIONS ON COMPUTATIONAL SYSTEMS BIOLOGY XI
  • 2008. The Continuous π-Calculus: A Process Algebra for Biochemical Modelling in COMPUTATIONAL METHODS IN SYSTEMS BIOLOGY
  • Book

    TITLE

    CONCUR 2012 – Concurrency Theory

    ISBN

    978-3-642-32939-5
    978-3-642-32940-1

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-642-32940-1_27

    DOI

    http://dx.doi.org/10.1007/978-3-642-32940-1_27

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1011745790


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Ludwig Maximilian University of Munich", 
              "id": "https://www.grid.ac/institutes/grid.5252.0", 
              "name": [
                "Institut f\u00fcr Informatik, Ludwig-Maximilians-Universit\u00e4t Munich, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tschaikowski", 
            "givenName": "Max", 
            "id": "sg:person.010026136742.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010026136742.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ludwig Maximilian University of Munich", 
              "id": "https://www.grid.ac/institutes/grid.5252.0", 
              "name": [
                "Institut f\u00fcr Informatik, Ludwig-Maximilians-Universit\u00e4t Munich, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tribastone", 
            "givenName": "Mirco", 
            "id": "sg:person.012051311303.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012051311303.91"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0304-3975(97)00127-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013533335"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-88562-7_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023260130", 
              "https://doi.org/10.1007/978-3-540-88562-7_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-88562-7_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023260130", 
              "https://doi.org/10.1007/978-3-540-88562-7_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tcs.2007.11.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026172667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tcs.2010.02.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044475553"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-04186-0_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047636521", 
              "https://doi.org/10.1007/978-3-642-04186-0_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1971.10482345", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058300818"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tac.1968.1098900", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061469712"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/3215235", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070229362"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/qest.2005.12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095120369"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511569951", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098665717"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012", 
        "datePublishedReg": "2012-01-01", 
        "description": "We study behavioural relations for process algebra with a fluid semantics given in terms of a system of ordinary differential equations (ODEs). We introduce label equivalence, a relation which is shown to induce an exactly lumped fluid model, a potentially smaller ODE system which can be exactly related to the original one. We show that, in general, for two processes that are related in the fluid sense nothing can be said about their relationship from stochastic viewpoint. However, we identify a class of models for which label equivalence implies a correspondence, called semi-isomorphism, between their transition systems that are at the basis of the Markovian interpretation.", 
        "editor": [
          {
            "familyName": "Koutny", 
            "givenName": "Maciej", 
            "type": "Person"
          }, 
          {
            "familyName": "Ulidowski", 
            "givenName": "Irek", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-642-32940-1_27", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-642-32939-5", 
            "978-3-642-32940-1"
          ], 
          "name": "CONCUR 2012 \u2013 Concurrency Theory", 
          "type": "Book"
        }, 
        "name": "Exact Fluid Lumpability for Markovian Process Algebra", 
        "pagination": "380-394", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-642-32940-1_27"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "37f67c7f223f53a0dc64a18c3095c4e860a8a81f4819b9f47d853484dd17a7f0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1011745790"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-642-32940-1_27", 
          "https://app.dimensions.ai/details/publication/pub.1011745790"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T23:50", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000250.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-642-32940-1_27"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-32940-1_27'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-32940-1_27'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-32940-1_27'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-32940-1_27'


     

    This table displays all metadata directly associated to this object as RDF triples.

    109 TRIPLES      23 PREDICATES      37 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-642-32940-1_27 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N94e3fe41ffc745ee9ae3857ec2ae52d8
    4 schema:citation sg:pub.10.1007/978-3-540-88562-7_11
    5 sg:pub.10.1007/978-3-642-04186-0_11
    6 https://doi.org/10.1016/j.tcs.2007.11.012
    7 https://doi.org/10.1016/j.tcs.2010.02.001
    8 https://doi.org/10.1016/s0304-3975(97)00127-8
    9 https://doi.org/10.1017/cbo9780511569951
    10 https://doi.org/10.1080/01621459.1971.10482345
    11 https://doi.org/10.1109/qest.2005.12
    12 https://doi.org/10.1109/tac.1968.1098900
    13 https://doi.org/10.2307/3215235
    14 schema:datePublished 2012
    15 schema:datePublishedReg 2012-01-01
    16 schema:description We study behavioural relations for process algebra with a fluid semantics given in terms of a system of ordinary differential equations (ODEs). We introduce label equivalence, a relation which is shown to induce an exactly lumped fluid model, a potentially smaller ODE system which can be exactly related to the original one. We show that, in general, for two processes that are related in the fluid sense nothing can be said about their relationship from stochastic viewpoint. However, we identify a class of models for which label equivalence implies a correspondence, called semi-isomorphism, between their transition systems that are at the basis of the Markovian interpretation.
    17 schema:editor N5f6ab58207324d5582ee27985d6d02ab
    18 schema:genre chapter
    19 schema:inLanguage en
    20 schema:isAccessibleForFree false
    21 schema:isPartOf N47a4926dcd6647b895077f1c5db53bca
    22 schema:name Exact Fluid Lumpability for Markovian Process Algebra
    23 schema:pagination 380-394
    24 schema:productId N5cc5c7b6e390498ca29af2c4d10a9dc3
    25 N6e74040e43b547868f4c63bea572b97c
    26 Nc4b308c55f204935bbb7cd650da894e9
    27 schema:publisher N574f961e788a4869b5ccf866eee63b72
    28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011745790
    29 https://doi.org/10.1007/978-3-642-32940-1_27
    30 schema:sdDatePublished 2019-04-15T23:50
    31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    32 schema:sdPublisher N01c6074f8a1345a2b4ccacdb2a91cff7
    33 schema:url http://link.springer.com/10.1007/978-3-642-32940-1_27
    34 sgo:license sg:explorer/license/
    35 sgo:sdDataset chapters
    36 rdf:type schema:Chapter
    37 N01c6074f8a1345a2b4ccacdb2a91cff7 schema:name Springer Nature - SN SciGraph project
    38 rdf:type schema:Organization
    39 N234dcd26408646beae32a26bd5b70625 rdf:first Na3c194a2322340428d2ddc0e5a572ab9
    40 rdf:rest rdf:nil
    41 N47a4926dcd6647b895077f1c5db53bca schema:isbn 978-3-642-32939-5
    42 978-3-642-32940-1
    43 schema:name CONCUR 2012 – Concurrency Theory
    44 rdf:type schema:Book
    45 N574f961e788a4869b5ccf866eee63b72 schema:location Berlin, Heidelberg
    46 schema:name Springer Berlin Heidelberg
    47 rdf:type schema:Organisation
    48 N5cc5c7b6e390498ca29af2c4d10a9dc3 schema:name readcube_id
    49 schema:value 37f67c7f223f53a0dc64a18c3095c4e860a8a81f4819b9f47d853484dd17a7f0
    50 rdf:type schema:PropertyValue
    51 N5f6ab58207324d5582ee27985d6d02ab rdf:first N8b589072645e48d38fae21e56bc059c1
    52 rdf:rest N234dcd26408646beae32a26bd5b70625
    53 N6e74040e43b547868f4c63bea572b97c schema:name dimensions_id
    54 schema:value pub.1011745790
    55 rdf:type schema:PropertyValue
    56 N8b589072645e48d38fae21e56bc059c1 schema:familyName Koutny
    57 schema:givenName Maciej
    58 rdf:type schema:Person
    59 N94e3fe41ffc745ee9ae3857ec2ae52d8 rdf:first sg:person.010026136742.48
    60 rdf:rest Ncddeea43257143dab4977167798a1aeb
    61 Na3c194a2322340428d2ddc0e5a572ab9 schema:familyName Ulidowski
    62 schema:givenName Irek
    63 rdf:type schema:Person
    64 Nc4b308c55f204935bbb7cd650da894e9 schema:name doi
    65 schema:value 10.1007/978-3-642-32940-1_27
    66 rdf:type schema:PropertyValue
    67 Ncddeea43257143dab4977167798a1aeb rdf:first sg:person.012051311303.91
    68 rdf:rest rdf:nil
    69 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Mathematical Sciences
    71 rdf:type schema:DefinedTerm
    72 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    73 schema:name Pure Mathematics
    74 rdf:type schema:DefinedTerm
    75 sg:person.010026136742.48 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
    76 schema:familyName Tschaikowski
    77 schema:givenName Max
    78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010026136742.48
    79 rdf:type schema:Person
    80 sg:person.012051311303.91 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
    81 schema:familyName Tribastone
    82 schema:givenName Mirco
    83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012051311303.91
    84 rdf:type schema:Person
    85 sg:pub.10.1007/978-3-540-88562-7_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023260130
    86 https://doi.org/10.1007/978-3-540-88562-7_11
    87 rdf:type schema:CreativeWork
    88 sg:pub.10.1007/978-3-642-04186-0_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047636521
    89 https://doi.org/10.1007/978-3-642-04186-0_11
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1016/j.tcs.2007.11.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026172667
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1016/j.tcs.2010.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044475553
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1016/s0304-3975(97)00127-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013533335
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1017/cbo9780511569951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098665717
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1080/01621459.1971.10482345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058300818
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1109/qest.2005.12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095120369
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1109/tac.1968.1098900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061469712
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.2307/3215235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070229362
    106 rdf:type schema:CreativeWork
    107 https://www.grid.ac/institutes/grid.5252.0 schema:alternateName Ludwig Maximilian University of Munich
    108 schema:name Institut für Informatik, Ludwig-Maximilians-Universität Munich, Germany
    109 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...