Systems Biology Powered by Artificial Intelligence View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2012

AUTHORS

Hiroaki Kitano

ABSTRACT

Systems biology is an attempt to understand biological system as system thereby triggering innovations in medical practice, drug discovery, bio-engineering, and global sustainability problems. The fundamental difficulties lies in the complexity of biological systems that have evolved through billions of years. Nevertheless, there are fundamental principles governing biological systems as complex evolvable systems that has been optimized for certain environmental constraints. Broad range of AI technologies can be applied for systems biology such as text-mining, qualitative physics, marker-passing algorithms, statistical inference, machine learning, etc. In fact, systems biology is one of the best field that AI technologies can be best applied to make high impact research that can impact real-world. This talk addresses basic issues in systems biology, especially in systems drug discovery and coral reef systems biology, and discusses how AI can contribute to make difference. More... »

PAGES

1-1

Book

TITLE

PRICAI 2012: Trends in Artificial Intelligence

ISBN

978-3-642-32694-3
978-3-642-32695-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-32695-0_1

DOI

http://dx.doi.org/10.1007/978-3-642-32695-0_1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004854144


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Okinawa Institute of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.250464.1", 
          "name": [
            "The Systems Biology Institute, Okinawa Institute of Science and Technology, Sony Computer Science Laboratories, Inc., Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kitano", 
        "givenName": "Hiroaki", 
        "id": "sg:person.01355755204.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355755204.11"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "Systems biology is an attempt to understand biological system as system thereby triggering innovations in medical practice, drug discovery, bio-engineering, and global sustainability problems. The fundamental difficulties lies in the complexity of biological systems that have evolved through billions of years. Nevertheless, there are fundamental principles governing biological systems as complex evolvable systems that has been optimized for certain environmental constraints. Broad range of AI technologies can be applied for systems biology such as text-mining, qualitative physics, marker-passing algorithms, statistical inference, machine learning, etc. In fact, systems biology is one of the best field that AI technologies can be best applied to make high impact research that can impact real-world. This talk addresses basic issues in systems biology, especially in systems drug discovery and coral reef systems biology, and discusses how AI can contribute to make difference.", 
    "editor": [
      {
        "familyName": "Anthony", 
        "givenName": "Patricia", 
        "type": "Person"
      }, 
      {
        "familyName": "Ishizuka", 
        "givenName": "Mitsuru", 
        "type": "Person"
      }, 
      {
        "familyName": "Lukose", 
        "givenName": "Dickson", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-32695-0_1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-32694-3", 
        "978-3-642-32695-0"
      ], 
      "name": "PRICAI 2012: Trends in Artificial Intelligence", 
      "type": "Book"
    }, 
    "name": "Systems Biology Powered by Artificial Intelligence", 
    "pagination": "1-1", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-32695-0_1"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1721bf54ba973bb8aebaf54dd3fec58bba7055456c61d6e728ed6e3249591eb1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004854144"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-32695-0_1", 
      "https://app.dimensions.ai/details/publication/pub.1004854144"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T17:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000008.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-32695-0_1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-32695-0_1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-32695-0_1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-32695-0_1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-32695-0_1'


 

This table displays all metadata directly associated to this object as RDF triples.

75 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-32695-0_1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nbb7e3af86167425da99bd2437a6b07f5
4 schema:datePublished 2012
5 schema:datePublishedReg 2012-01-01
6 schema:description Systems biology is an attempt to understand biological system as system thereby triggering innovations in medical practice, drug discovery, bio-engineering, and global sustainability problems. The fundamental difficulties lies in the complexity of biological systems that have evolved through billions of years. Nevertheless, there are fundamental principles governing biological systems as complex evolvable systems that has been optimized for certain environmental constraints. Broad range of AI technologies can be applied for systems biology such as text-mining, qualitative physics, marker-passing algorithms, statistical inference, machine learning, etc. In fact, systems biology is one of the best field that AI technologies can be best applied to make high impact research that can impact real-world. This talk addresses basic issues in systems biology, especially in systems drug discovery and coral reef systems biology, and discusses how AI can contribute to make difference.
7 schema:editor N97fcd58dbe4f4ffe989e4fbea6c89a8a
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nd7c7267883304033bd5d0d9f03a8aa36
12 schema:name Systems Biology Powered by Artificial Intelligence
13 schema:pagination 1-1
14 schema:productId N067a798ce12345198ed571b045c5c64a
15 N07211fc85d934acbb10694984f558e42
16 N8bc848c51d284cd68467e40ed521c498
17 schema:publisher N7d77b70d52bc4d7b83725c161858dff1
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004854144
19 https://doi.org/10.1007/978-3-642-32695-0_1
20 schema:sdDatePublished 2019-04-15T17:55
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N807149a99aec487481ff5a70d246a1ee
23 schema:url http://link.springer.com/10.1007/978-3-642-32695-0_1
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N067a798ce12345198ed571b045c5c64a schema:name readcube_id
28 schema:value 1721bf54ba973bb8aebaf54dd3fec58bba7055456c61d6e728ed6e3249591eb1
29 rdf:type schema:PropertyValue
30 N07211fc85d934acbb10694984f558e42 schema:name doi
31 schema:value 10.1007/978-3-642-32695-0_1
32 rdf:type schema:PropertyValue
33 N09cc311972b940d38598cce9e368b451 rdf:first Ne677298ef00f46bdba14b4f6fce5773b
34 rdf:rest N5f672499c7184f4382df0bd170303eeb
35 N5f672499c7184f4382df0bd170303eeb rdf:first N8de4c262120d45c3b7135c0f3bf956eb
36 rdf:rest rdf:nil
37 N7d77b70d52bc4d7b83725c161858dff1 schema:location Berlin, Heidelberg
38 schema:name Springer Berlin Heidelberg
39 rdf:type schema:Organisation
40 N807149a99aec487481ff5a70d246a1ee schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 N8bc848c51d284cd68467e40ed521c498 schema:name dimensions_id
43 schema:value pub.1004854144
44 rdf:type schema:PropertyValue
45 N8de4c262120d45c3b7135c0f3bf956eb schema:familyName Lukose
46 schema:givenName Dickson
47 rdf:type schema:Person
48 N97fcd58dbe4f4ffe989e4fbea6c89a8a rdf:first Na4e9405e68c643beb497e3877cfd6827
49 rdf:rest N09cc311972b940d38598cce9e368b451
50 Na4e9405e68c643beb497e3877cfd6827 schema:familyName Anthony
51 schema:givenName Patricia
52 rdf:type schema:Person
53 Nbb7e3af86167425da99bd2437a6b07f5 rdf:first sg:person.01355755204.11
54 rdf:rest rdf:nil
55 Nd7c7267883304033bd5d0d9f03a8aa36 schema:isbn 978-3-642-32694-3
56 978-3-642-32695-0
57 schema:name PRICAI 2012: Trends in Artificial Intelligence
58 rdf:type schema:Book
59 Ne677298ef00f46bdba14b4f6fce5773b schema:familyName Ishizuka
60 schema:givenName Mitsuru
61 rdf:type schema:Person
62 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
63 schema:name Information and Computing Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
66 schema:name Artificial Intelligence and Image Processing
67 rdf:type schema:DefinedTerm
68 sg:person.01355755204.11 schema:affiliation https://www.grid.ac/institutes/grid.250464.1
69 schema:familyName Kitano
70 schema:givenName Hiroaki
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355755204.11
72 rdf:type schema:Person
73 https://www.grid.ac/institutes/grid.250464.1 schema:alternateName Okinawa Institute of Science and Technology
74 schema:name The Systems Biology Institute, Okinawa Institute of Science and Technology, Sony Computer Science Laboratories, Inc., Japan
75 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...