Verified Computation with Probabilities View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2012

AUTHORS

Scott Ferson , Jack Siegrist

ABSTRACT

Because machine calculations are prone to errors that can sometimes accumulate disastrously, computer scientists use special strategies called verified computation to ensure output is reliable. Such strategies are needed for computing with probability distributions. In probabilistic calculations, analysts have routinely assumed (i) probabilities and probability distributions are precisely specified, (ii) most or all variables are independent or otherwise have well-known dependence, and (iii) model structure is known perfectly. These assumptions are usually made for mathematical convenience, rather than with empirical justification, even in sophisticated applications. Probability bounds analysis computes bounds guaranteed to enclose probabilities and probability distributions even when these assumptions are relaxed or removed. In many cases, results are best-possible bounds, i.e., tightening them requires additional empirical information. This paper presents an overview of probability bounds analysis as a computationally practical implementation of the theory of imprecise probabilities that represents verified computation of probabilities and distributions. More... »

PAGES

95-122

Book

TITLE

Uncertainty Quantification in Scientific Computing

ISBN

978-3-642-32676-9
978-3-642-32677-6

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-32677-6_7

DOI

http://dx.doi.org/10.1007/978-3-642-32677-6_7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032848202


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Applied Biomathematics, USA", 
          "id": "http://www.grid.ac/institutes/grid.422751.7", 
          "name": [
            "Applied Biomathematics, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ferson", 
        "givenName": "Scott", 
        "id": "sg:person.012115026643.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012115026643.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Applied Biomathematics, USA", 
          "id": "http://www.grid.ac/institutes/grid.422751.7", 
          "name": [
            "Applied Biomathematics, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Siegrist", 
        "givenName": "Jack", 
        "id": "sg:person.016232235605.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016232235605.11"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "Because machine calculations are prone to errors that can sometimes accumulate disastrously, computer scientists use special strategies called verified computation to ensure output is reliable. Such strategies are needed for computing with probability distributions. In probabilistic calculations, analysts have routinely assumed (i)\u00a0probabilities and probability distributions are precisely specified, (ii)\u00a0most or all variables are independent or otherwise have well-known dependence, and (iii)\u00a0model structure is known perfectly. These assumptions are usually made for mathematical convenience, rather than with empirical justification, even in sophisticated applications. Probability bounds analysis computes bounds guaranteed to enclose probabilities and probability distributions even when these assumptions are relaxed or removed. In many cases, results are best-possible bounds, i.e., tightening them requires additional empirical information. This paper presents an overview of probability bounds analysis as a computationally practical implementation of the theory of imprecise probabilities that represents verified computation of probabilities and distributions.", 
    "editor": [
      {
        "familyName": "Dienstfrey", 
        "givenName": "Andrew M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Boisvert", 
        "givenName": "Ronald F.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-32677-6_7", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-32676-9", 
        "978-3-642-32677-6"
      ], 
      "name": "Uncertainty Quantification in Scientific Computing", 
      "type": "Book"
    }, 
    "keywords": [
      "verified computation", 
      "probability distribution", 
      "best-possible bounds", 
      "probability bounds analysis", 
      "additional empirical information", 
      "mathematical convenience", 
      "imprecise probabilities", 
      "compute bounds", 
      "model structure", 
      "bounds analysis", 
      "practical implementation", 
      "computation", 
      "bounds", 
      "computer scientists", 
      "machine calculations", 
      "probabilistic calculations", 
      "probability", 
      "sophisticated applications", 
      "assumption", 
      "special strategies", 
      "empirical justification", 
      "theory", 
      "empirical information", 
      "variables", 
      "error", 
      "distribution", 
      "calculations", 
      "output", 
      "applications", 
      "implementation", 
      "justification", 
      "analysts", 
      "strategies", 
      "such strategies", 
      "cases", 
      "results", 
      "analysis", 
      "structure", 
      "information", 
      "convenience", 
      "overview", 
      "scientists", 
      "dependence", 
      "paper", 
      "Probability bounds analysis computes bounds", 
      "bounds analysis computes bounds", 
      "analysis computes bounds"
    ], 
    "name": "Verified Computation with Probabilities", 
    "pagination": "95-122", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032848202"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-32677-6_7"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-32677-6_7", 
      "https://app.dimensions.ai/details/publication/pub.1032848202"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_418.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-32677-6_7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-32677-6_7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-32677-6_7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-32677-6_7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-32677-6_7'


 

This table displays all metadata directly associated to this object as RDF triples.

119 TRIPLES      23 PREDICATES      73 URIs      66 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-32677-6_7 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N3ddd5a5e59dd42c7ae44070e95442604
4 schema:datePublished 2012
5 schema:datePublishedReg 2012-01-01
6 schema:description Because machine calculations are prone to errors that can sometimes accumulate disastrously, computer scientists use special strategies called verified computation to ensure output is reliable. Such strategies are needed for computing with probability distributions. In probabilistic calculations, analysts have routinely assumed (i) probabilities and probability distributions are precisely specified, (ii) most or all variables are independent or otherwise have well-known dependence, and (iii) model structure is known perfectly. These assumptions are usually made for mathematical convenience, rather than with empirical justification, even in sophisticated applications. Probability bounds analysis computes bounds guaranteed to enclose probabilities and probability distributions even when these assumptions are relaxed or removed. In many cases, results are best-possible bounds, i.e., tightening them requires additional empirical information. This paper presents an overview of probability bounds analysis as a computationally practical implementation of the theory of imprecise probabilities that represents verified computation of probabilities and distributions.
7 schema:editor N3ab05f833e1841bfb4cf74bc20956053
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N271c891bb6584600b2ae9e5eaaf677df
12 schema:keywords Probability bounds analysis computes bounds
13 additional empirical information
14 analysis
15 analysis computes bounds
16 analysts
17 applications
18 assumption
19 best-possible bounds
20 bounds
21 bounds analysis
22 bounds analysis computes bounds
23 calculations
24 cases
25 computation
26 compute bounds
27 computer scientists
28 convenience
29 dependence
30 distribution
31 empirical information
32 empirical justification
33 error
34 implementation
35 imprecise probabilities
36 information
37 justification
38 machine calculations
39 mathematical convenience
40 model structure
41 output
42 overview
43 paper
44 practical implementation
45 probabilistic calculations
46 probability
47 probability bounds analysis
48 probability distribution
49 results
50 scientists
51 sophisticated applications
52 special strategies
53 strategies
54 structure
55 such strategies
56 theory
57 variables
58 verified computation
59 schema:name Verified Computation with Probabilities
60 schema:pagination 95-122
61 schema:productId N78167c0d07644bdd8bc2a4779b731d7a
62 Ne1042a8e322041a8872ede2819d94e39
63 schema:publisher N67e3890112d046acb344a35128880f59
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032848202
65 https://doi.org/10.1007/978-3-642-32677-6_7
66 schema:sdDatePublished 2021-12-01T20:09
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher Nb5669597569b4fbd8880816b4ed23c7f
69 schema:url https://doi.org/10.1007/978-3-642-32677-6_7
70 sgo:license sg:explorer/license/
71 sgo:sdDataset chapters
72 rdf:type schema:Chapter
73 N08c5b564f8d54b1bb74870d00f51b47d rdf:first sg:person.016232235605.11
74 rdf:rest rdf:nil
75 N271c891bb6584600b2ae9e5eaaf677df schema:isbn 978-3-642-32676-9
76 978-3-642-32677-6
77 schema:name Uncertainty Quantification in Scientific Computing
78 rdf:type schema:Book
79 N3ab05f833e1841bfb4cf74bc20956053 rdf:first Ne1864ae5b17a496f84ee867a439aa804
80 rdf:rest N47deb4ae7ff24f00922486b10b8b720e
81 N3ddd5a5e59dd42c7ae44070e95442604 rdf:first sg:person.012115026643.10
82 rdf:rest N08c5b564f8d54b1bb74870d00f51b47d
83 N47deb4ae7ff24f00922486b10b8b720e rdf:first Neb9550a2cba6420b91c318f88c87bb44
84 rdf:rest rdf:nil
85 N67e3890112d046acb344a35128880f59 schema:name Springer Nature
86 rdf:type schema:Organisation
87 N78167c0d07644bdd8bc2a4779b731d7a schema:name dimensions_id
88 schema:value pub.1032848202
89 rdf:type schema:PropertyValue
90 Nb5669597569b4fbd8880816b4ed23c7f schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 Ne1042a8e322041a8872ede2819d94e39 schema:name doi
93 schema:value 10.1007/978-3-642-32677-6_7
94 rdf:type schema:PropertyValue
95 Ne1864ae5b17a496f84ee867a439aa804 schema:familyName Dienstfrey
96 schema:givenName Andrew M.
97 rdf:type schema:Person
98 Neb9550a2cba6420b91c318f88c87bb44 schema:familyName Boisvert
99 schema:givenName Ronald F.
100 rdf:type schema:Person
101 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
102 schema:name Information and Computing Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
105 schema:name Information Systems
106 rdf:type schema:DefinedTerm
107 sg:person.012115026643.10 schema:affiliation grid-institutes:grid.422751.7
108 schema:familyName Ferson
109 schema:givenName Scott
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012115026643.10
111 rdf:type schema:Person
112 sg:person.016232235605.11 schema:affiliation grid-institutes:grid.422751.7
113 schema:familyName Siegrist
114 schema:givenName Jack
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016232235605.11
116 rdf:type schema:Person
117 grid-institutes:grid.422751.7 schema:alternateName Applied Biomathematics, USA
118 schema:name Applied Biomathematics, USA
119 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...