Uncertainty and Sensitivity Analysis: From Regulatory Requirements to Conceptual Structure and Computational Implementation View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2012

AUTHORS

Jon C. Helton , Cédric J. Sallaberry

ABSTRACT

An approach to the conversion of regulatory requirements into a conceptual and computational structure that permits meaningful uncertainty and sensitivity analyses is descibed. This approach is predicated on the description of the desired analysis in terms of three basic entities: (i) a probability space characterizing aleatory uncertainty, (ii) a probability space characterizing epistemic uncertainty, and (iii) a model that predicts system behavior. The presented approach is illustrated with results from the 2008 performance assessment for the proposed repository for high-level radioactive waste at Yucca Mountain, Nevada. More... »

PAGES

60-77

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-32677-6_5

DOI

http://dx.doi.org/10.1007/978-3-642-32677-6_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012658976


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Statistics, Arizona State University, 85287, Tempe, AZ, USA", 
          "id": "http://www.grid.ac/institutes/grid.215654.1", 
          "name": [
            "Department of Mathematics and Statistics, Arizona State University, 85287, Tempe, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Helton", 
        "givenName": "Jon C.", 
        "id": "sg:person.012404537737.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012404537737.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sandia National Laboratories, 87185, Albuquerque, NM, USA", 
          "id": "http://www.grid.ac/institutes/grid.474520.0", 
          "name": [
            "Sandia National Laboratories, 87185, Albuquerque, NM, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sallaberry", 
        "givenName": "C\u00e9dric J.", 
        "id": "sg:person.013434677003.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013434677003.29"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "An approach to the conversion of regulatory requirements into a conceptual and computational structure that permits meaningful uncertainty and sensitivity analyses is descibed. This approach is predicated on the description of the desired analysis in terms of three basic entities: (i) a probability space characterizing aleatory uncertainty, (ii) a probability space characterizing epistemic uncertainty, and (iii) a model that predicts system behavior. The presented approach is illustrated with results from the 2008 performance assessment for the proposed repository for high-level radioactive waste at Yucca Mountain, Nevada.", 
    "editor": [
      {
        "familyName": "Dienstfrey", 
        "givenName": "Andrew M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Boisvert", 
        "givenName": "Ronald F.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-32677-6_5", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-32676-9", 
        "978-3-642-32677-6"
      ], 
      "name": "Uncertainty Quantification in Scientific Computing", 
      "type": "Book"
    }, 
    "keywords": [
      "probability space", 
      "aleatory uncertainty", 
      "meaningful uncertainties", 
      "computational implementation", 
      "epistemic uncertainty", 
      "computational structure", 
      "sensitivity analysis", 
      "system behavior", 
      "uncertainty", 
      "presented approach", 
      "basic entities", 
      "space", 
      "approach", 
      "performance assessment", 
      "description", 
      "structure", 
      "model", 
      "Yucca Mountain", 
      "terms", 
      "analysis", 
      "implementation", 
      "requirements", 
      "behavior", 
      "high-level radioactive waste", 
      "results", 
      "radioactive waste", 
      "conceptual structure", 
      "repository", 
      "entities", 
      "regulatory requirements", 
      "conversion", 
      "assessment", 
      "Nevada", 
      "Mountains", 
      "waste"
    ], 
    "name": "Uncertainty and Sensitivity Analysis: From Regulatory Requirements to Conceptual Structure and Computational Implementation", 
    "pagination": "60-77", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012658976"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-32677-6_5"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-32677-6_5", 
      "https://app.dimensions.ai/details/publication/pub.1012658976"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_96.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-32677-6_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-32677-6_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-32677-6_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-32677-6_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-32677-6_5'


 

This table displays all metadata directly associated to this object as RDF triples.

110 TRIPLES      23 PREDICATES      61 URIs      54 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-32677-6_5 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Nfa49f7845ffc49d9b699e8d371afa209
4 schema:datePublished 2012
5 schema:datePublishedReg 2012-01-01
6 schema:description An approach to the conversion of regulatory requirements into a conceptual and computational structure that permits meaningful uncertainty and sensitivity analyses is descibed. This approach is predicated on the description of the desired analysis in terms of three basic entities: (i) a probability space characterizing aleatory uncertainty, (ii) a probability space characterizing epistemic uncertainty, and (iii) a model that predicts system behavior. The presented approach is illustrated with results from the 2008 performance assessment for the proposed repository for high-level radioactive waste at Yucca Mountain, Nevada.
7 schema:editor N5c5be8530c9f42ce98026f5d94d5a9c9
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf Naa4369d67ca248c28a345d83f2c47101
12 schema:keywords Mountains
13 Nevada
14 Yucca Mountain
15 aleatory uncertainty
16 analysis
17 approach
18 assessment
19 basic entities
20 behavior
21 computational implementation
22 computational structure
23 conceptual structure
24 conversion
25 description
26 entities
27 epistemic uncertainty
28 high-level radioactive waste
29 implementation
30 meaningful uncertainties
31 model
32 performance assessment
33 presented approach
34 probability space
35 radioactive waste
36 regulatory requirements
37 repository
38 requirements
39 results
40 sensitivity analysis
41 space
42 structure
43 system behavior
44 terms
45 uncertainty
46 waste
47 schema:name Uncertainty and Sensitivity Analysis: From Regulatory Requirements to Conceptual Structure and Computational Implementation
48 schema:pagination 60-77
49 schema:productId N67faf60b0f004153a8af5a437bbf34f1
50 Nb8dcb46376b24f2889ea833cd6e5f0b4
51 schema:publisher N0b549a71d9e14fd3806f7d13d7d12144
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012658976
53 https://doi.org/10.1007/978-3-642-32677-6_5
54 schema:sdDatePublished 2022-05-20T07:49
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N0b66db14bb904d73a1ecdb63bc1964c8
57 schema:url https://doi.org/10.1007/978-3-642-32677-6_5
58 sgo:license sg:explorer/license/
59 sgo:sdDataset chapters
60 rdf:type schema:Chapter
61 N0b549a71d9e14fd3806f7d13d7d12144 schema:name Springer Nature
62 rdf:type schema:Organisation
63 N0b66db14bb904d73a1ecdb63bc1964c8 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N11b7452bb2cc4e60a9850ad2bbfbd35c rdf:first N868df557dbbd453abd3718ba43589bd4
66 rdf:rest rdf:nil
67 N5c5be8530c9f42ce98026f5d94d5a9c9 rdf:first Nd50350c7f31f499eb24efabeb218420b
68 rdf:rest N11b7452bb2cc4e60a9850ad2bbfbd35c
69 N67faf60b0f004153a8af5a437bbf34f1 schema:name dimensions_id
70 schema:value pub.1012658976
71 rdf:type schema:PropertyValue
72 N868df557dbbd453abd3718ba43589bd4 schema:familyName Boisvert
73 schema:givenName Ronald F.
74 rdf:type schema:Person
75 Naa4369d67ca248c28a345d83f2c47101 schema:isbn 978-3-642-32676-9
76 978-3-642-32677-6
77 schema:name Uncertainty Quantification in Scientific Computing
78 rdf:type schema:Book
79 Nb8dcb46376b24f2889ea833cd6e5f0b4 schema:name doi
80 schema:value 10.1007/978-3-642-32677-6_5
81 rdf:type schema:PropertyValue
82 Nd50350c7f31f499eb24efabeb218420b schema:familyName Dienstfrey
83 schema:givenName Andrew M.
84 rdf:type schema:Person
85 Nec69934ca8be4c08b3f7676f989191f0 rdf:first sg:person.013434677003.29
86 rdf:rest rdf:nil
87 Nfa49f7845ffc49d9b699e8d371afa209 rdf:first sg:person.012404537737.34
88 rdf:rest Nec69934ca8be4c08b3f7676f989191f0
89 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
90 schema:name Information and Computing Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
93 schema:name Information Systems
94 rdf:type schema:DefinedTerm
95 sg:person.012404537737.34 schema:affiliation grid-institutes:grid.215654.1
96 schema:familyName Helton
97 schema:givenName Jon C.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012404537737.34
99 rdf:type schema:Person
100 sg:person.013434677003.29 schema:affiliation grid-institutes:grid.474520.0
101 schema:familyName Sallaberry
102 schema:givenName Cédric J.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013434677003.29
104 rdf:type schema:Person
105 grid-institutes:grid.215654.1 schema:alternateName Department of Mathematics and Statistics, Arizona State University, 85287, Tempe, AZ, USA
106 schema:name Department of Mathematics and Statistics, Arizona State University, 85287, Tempe, AZ, USA
107 rdf:type schema:Organization
108 grid-institutes:grid.474520.0 schema:alternateName Sandia National Laboratories, 87185, Albuquerque, NM, USA
109 schema:name Sandia National Laboratories, 87185, Albuquerque, NM, USA
110 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...