Ontology type: schema:Chapter Open Access: True
2012
AUTHORSJon C. Helton , Cédric J. Sallaberry
ABSTRACTAn approach to the conversion of regulatory requirements into a conceptual and computational structure that permits meaningful uncertainty and sensitivity analyses is descibed. This approach is predicated on the description of the desired analysis in terms of three basic entities: (i) a probability space characterizing aleatory uncertainty, (ii) a probability space characterizing epistemic uncertainty, and (iii) a model that predicts system behavior. The presented approach is illustrated with results from the 2008 performance assessment for the proposed repository for high-level radioactive waste at Yucca Mountain, Nevada. More... »
PAGES60-77
Uncertainty Quantification in Scientific Computing
ISBN
978-3-642-32676-9
978-3-642-32677-6
http://scigraph.springernature.com/pub.10.1007/978-3-642-32677-6_5
DOIhttp://dx.doi.org/10.1007/978-3-642-32677-6_5
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1012658976
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information Systems",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mathematics and Statistics, Arizona State University, 85287, Tempe, AZ, USA",
"id": "http://www.grid.ac/institutes/grid.215654.1",
"name": [
"Department of Mathematics and Statistics, Arizona State University, 85287, Tempe, AZ, USA"
],
"type": "Organization"
},
"familyName": "Helton",
"givenName": "Jon C.",
"id": "sg:person.012404537737.34",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012404537737.34"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Sandia National Laboratories, 87185, Albuquerque, NM, USA",
"id": "http://www.grid.ac/institutes/grid.474520.0",
"name": [
"Sandia National Laboratories, 87185, Albuquerque, NM, USA"
],
"type": "Organization"
},
"familyName": "Sallaberry",
"givenName": "C\u00e9dric J.",
"id": "sg:person.013434677003.29",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013434677003.29"
],
"type": "Person"
}
],
"datePublished": "2012",
"datePublishedReg": "2012-01-01",
"description": "An approach to the conversion of regulatory requirements into a conceptual and computational structure that permits meaningful uncertainty and sensitivity analyses is descibed. This approach is predicated on the description of the desired analysis in terms of three basic entities: (i) a probability space characterizing aleatory uncertainty, (ii) a probability space characterizing epistemic uncertainty, and (iii) a model that predicts system behavior. The presented approach is illustrated with results from the 2008 performance assessment for the proposed repository for high-level radioactive waste at Yucca Mountain, Nevada.",
"editor": [
{
"familyName": "Dienstfrey",
"givenName": "Andrew M.",
"type": "Person"
},
{
"familyName": "Boisvert",
"givenName": "Ronald F.",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-32677-6_5",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-642-32676-9",
"978-3-642-32677-6"
],
"name": "Uncertainty Quantification in Scientific Computing",
"type": "Book"
},
"keywords": [
"probability space",
"aleatory uncertainty",
"meaningful uncertainties",
"computational implementation",
"epistemic uncertainty",
"computational structure",
"sensitivity analysis",
"system behavior",
"uncertainty",
"presented approach",
"basic entities",
"space",
"approach",
"performance assessment",
"description",
"structure",
"model",
"Yucca Mountain",
"terms",
"analysis",
"implementation",
"requirements",
"behavior",
"high-level radioactive waste",
"results",
"radioactive waste",
"conceptual structure",
"repository",
"entities",
"regulatory requirements",
"conversion",
"assessment",
"Nevada",
"Mountains",
"waste"
],
"name": "Uncertainty and Sensitivity Analysis: From Regulatory Requirements to Conceptual Structure and Computational Implementation",
"pagination": "60-77",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1012658976"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-32677-6_5"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-32677-6_5",
"https://app.dimensions.ai/details/publication/pub.1012658976"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:49",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_96.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-642-32677-6_5"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-32677-6_5'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-32677-6_5'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-32677-6_5'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-32677-6_5'
This table displays all metadata directly associated to this object as RDF triples.
110 TRIPLES
23 PREDICATES
61 URIs
54 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-642-32677-6_5 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0806 |
3 | ″ | schema:author | Nfa49f7845ffc49d9b699e8d371afa209 |
4 | ″ | schema:datePublished | 2012 |
5 | ″ | schema:datePublishedReg | 2012-01-01 |
6 | ″ | schema:description | An approach to the conversion of regulatory requirements into a conceptual and computational structure that permits meaningful uncertainty and sensitivity analyses is descibed. This approach is predicated on the description of the desired analysis in terms of three basic entities: (i) a probability space characterizing aleatory uncertainty, (ii) a probability space characterizing epistemic uncertainty, and (iii) a model that predicts system behavior. The presented approach is illustrated with results from the 2008 performance assessment for the proposed repository for high-level radioactive waste at Yucca Mountain, Nevada. |
7 | ″ | schema:editor | N5c5be8530c9f42ce98026f5d94d5a9c9 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | true |
11 | ″ | schema:isPartOf | Naa4369d67ca248c28a345d83f2c47101 |
12 | ″ | schema:keywords | Mountains |
13 | ″ | ″ | Nevada |
14 | ″ | ″ | Yucca Mountain |
15 | ″ | ″ | aleatory uncertainty |
16 | ″ | ″ | analysis |
17 | ″ | ″ | approach |
18 | ″ | ″ | assessment |
19 | ″ | ″ | basic entities |
20 | ″ | ″ | behavior |
21 | ″ | ″ | computational implementation |
22 | ″ | ″ | computational structure |
23 | ″ | ″ | conceptual structure |
24 | ″ | ″ | conversion |
25 | ″ | ″ | description |
26 | ″ | ″ | entities |
27 | ″ | ″ | epistemic uncertainty |
28 | ″ | ″ | high-level radioactive waste |
29 | ″ | ″ | implementation |
30 | ″ | ″ | meaningful uncertainties |
31 | ″ | ″ | model |
32 | ″ | ″ | performance assessment |
33 | ″ | ″ | presented approach |
34 | ″ | ″ | probability space |
35 | ″ | ″ | radioactive waste |
36 | ″ | ″ | regulatory requirements |
37 | ″ | ″ | repository |
38 | ″ | ″ | requirements |
39 | ″ | ″ | results |
40 | ″ | ″ | sensitivity analysis |
41 | ″ | ″ | space |
42 | ″ | ″ | structure |
43 | ″ | ″ | system behavior |
44 | ″ | ″ | terms |
45 | ″ | ″ | uncertainty |
46 | ″ | ″ | waste |
47 | ″ | schema:name | Uncertainty and Sensitivity Analysis: From Regulatory Requirements to Conceptual Structure and Computational Implementation |
48 | ″ | schema:pagination | 60-77 |
49 | ″ | schema:productId | N67faf60b0f004153a8af5a437bbf34f1 |
50 | ″ | ″ | Nb8dcb46376b24f2889ea833cd6e5f0b4 |
51 | ″ | schema:publisher | N0b549a71d9e14fd3806f7d13d7d12144 |
52 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1012658976 |
53 | ″ | ″ | https://doi.org/10.1007/978-3-642-32677-6_5 |
54 | ″ | schema:sdDatePublished | 2022-05-20T07:49 |
55 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
56 | ″ | schema:sdPublisher | N0b66db14bb904d73a1ecdb63bc1964c8 |
57 | ″ | schema:url | https://doi.org/10.1007/978-3-642-32677-6_5 |
58 | ″ | sgo:license | sg:explorer/license/ |
59 | ″ | sgo:sdDataset | chapters |
60 | ″ | rdf:type | schema:Chapter |
61 | N0b549a71d9e14fd3806f7d13d7d12144 | schema:name | Springer Nature |
62 | ″ | rdf:type | schema:Organisation |
63 | N0b66db14bb904d73a1ecdb63bc1964c8 | schema:name | Springer Nature - SN SciGraph project |
64 | ″ | rdf:type | schema:Organization |
65 | N11b7452bb2cc4e60a9850ad2bbfbd35c | rdf:first | N868df557dbbd453abd3718ba43589bd4 |
66 | ″ | rdf:rest | rdf:nil |
67 | N5c5be8530c9f42ce98026f5d94d5a9c9 | rdf:first | Nd50350c7f31f499eb24efabeb218420b |
68 | ″ | rdf:rest | N11b7452bb2cc4e60a9850ad2bbfbd35c |
69 | N67faf60b0f004153a8af5a437bbf34f1 | schema:name | dimensions_id |
70 | ″ | schema:value | pub.1012658976 |
71 | ″ | rdf:type | schema:PropertyValue |
72 | N868df557dbbd453abd3718ba43589bd4 | schema:familyName | Boisvert |
73 | ″ | schema:givenName | Ronald F. |
74 | ″ | rdf:type | schema:Person |
75 | Naa4369d67ca248c28a345d83f2c47101 | schema:isbn | 978-3-642-32676-9 |
76 | ″ | ″ | 978-3-642-32677-6 |
77 | ″ | schema:name | Uncertainty Quantification in Scientific Computing |
78 | ″ | rdf:type | schema:Book |
79 | Nb8dcb46376b24f2889ea833cd6e5f0b4 | schema:name | doi |
80 | ″ | schema:value | 10.1007/978-3-642-32677-6_5 |
81 | ″ | rdf:type | schema:PropertyValue |
82 | Nd50350c7f31f499eb24efabeb218420b | schema:familyName | Dienstfrey |
83 | ″ | schema:givenName | Andrew M. |
84 | ″ | rdf:type | schema:Person |
85 | Nec69934ca8be4c08b3f7676f989191f0 | rdf:first | sg:person.013434677003.29 |
86 | ″ | rdf:rest | rdf:nil |
87 | Nfa49f7845ffc49d9b699e8d371afa209 | rdf:first | sg:person.012404537737.34 |
88 | ″ | rdf:rest | Nec69934ca8be4c08b3f7676f989191f0 |
89 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
90 | ″ | schema:name | Information and Computing Sciences |
91 | ″ | rdf:type | schema:DefinedTerm |
92 | anzsrc-for:0806 | schema:inDefinedTermSet | anzsrc-for: |
93 | ″ | schema:name | Information Systems |
94 | ″ | rdf:type | schema:DefinedTerm |
95 | sg:person.012404537737.34 | schema:affiliation | grid-institutes:grid.215654.1 |
96 | ″ | schema:familyName | Helton |
97 | ″ | schema:givenName | Jon C. |
98 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012404537737.34 |
99 | ″ | rdf:type | schema:Person |
100 | sg:person.013434677003.29 | schema:affiliation | grid-institutes:grid.474520.0 |
101 | ″ | schema:familyName | Sallaberry |
102 | ″ | schema:givenName | Cédric J. |
103 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013434677003.29 |
104 | ″ | rdf:type | schema:Person |
105 | grid-institutes:grid.215654.1 | schema:alternateName | Department of Mathematics and Statistics, Arizona State University, 85287, Tempe, AZ, USA |
106 | ″ | schema:name | Department of Mathematics and Statistics, Arizona State University, 85287, Tempe, AZ, USA |
107 | ″ | rdf:type | schema:Organization |
108 | grid-institutes:grid.474520.0 | schema:alternateName | Sandia National Laboratories, 87185, Albuquerque, NM, USA |
109 | ″ | schema:name | Sandia National Laboratories, 87185, Albuquerque, NM, USA |
110 | ″ | rdf:type | schema:Organization |