Computational Sensemaking on Examples of Knowledge Discovery from Neuroscience Data: Towards Enhancing Stroke Rehabilitation View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2012

AUTHORS

Andreas Holzinger , Reinhold Scherer , Martin Seeber , Johanna Wagner , Gernot Müller-Putz

ABSTRACT

Strokes are often associated with persistent impairment of a lower limb. Functional brain mapping is a set of techniques from neuroscience for mapping biological quantities (computational maps) into spatial representations of the human brain as functional cortical tomography, generating massive data. Our goal is to understand cortical reorganization after a stroke and to develop models for optimizing rehabilitation with non-invasive electroencephalography. The challenge is to obtain insight into brain functioning, in order to develop predictive computational models to increase patient outcome. There are many EEG features that still need to be explored with respect to cortical reorganization. In the present work we use independent component analysis, and data visualization mapping as tools for sensemaking. Our results show activity patterns over the sensorimotor cortex, involved in the execution and association of movements; our results further supports the usefulness of inverse mapping methods and generative models for functional brain mapping in the context of non-invasive monitoring of brain activity. More... »

PAGES

166-168

References to SciGraph publications

Book

TITLE

Information Technology in Bio- and Medical Informatics

ISBN

978-3-642-32394-2
978-3-642-32395-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-32395-9_13

DOI

http://dx.doi.org/10.1007/978-3-642-32395-9_13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032685364


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Medical University of Graz", 
          "id": "https://www.grid.ac/institutes/grid.11598.34", 
          "name": [
            "Institute for Medical Informatics, Statistics & Documentation, Research Unit HCI4MED, Medical University Graz, A-8036\u00a0Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Holzinger", 
        "givenName": "Andreas", 
        "id": "sg:person.015335163460.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015335163460.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Institute for Knowledge Discovery, Laboratory of Brain-Computer Interfaces, Graz University of Technology, A-8010\u00a0Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scherer", 
        "givenName": "Reinhold", 
        "id": "sg:person.01137217027.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137217027.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Institute for Knowledge Discovery, Laboratory of Brain-Computer Interfaces, Graz University of Technology, A-8010\u00a0Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seeber", 
        "givenName": "Martin", 
        "id": "sg:person.01323525674.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323525674.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Institute for Knowledge Discovery, Laboratory of Brain-Computer Interfaces, Graz University of Technology, A-8010\u00a0Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wagner", 
        "givenName": "Johanna", 
        "id": "sg:person.0743372564.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743372564.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Institute for Knowledge Discovery, Laboratory of Brain-Computer Interfaces, Graz University of Technology, A-8010\u00a0Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "M\u00fcller-Putz", 
        "givenName": "Gernot", 
        "id": "sg:person.0631232046.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631232046.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-25364-5_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010327917", 
          "https://doi.org/10.1007/978-3-642-25364-5_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2003.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019572247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-1684(94)90029-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027445618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-1684(94)90029-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027445618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11517-011-0799-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032052892", 
          "https://doi.org/10.1007/s11517-011-0799-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.10061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035264981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa0911341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036272174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1260/2040-2295.1.2.197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064586430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1260/2040-2295.1.2.197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064586430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icorr.2009.5209472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093216033"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "Strokes are often associated with persistent impairment of a lower limb. Functional brain mapping is a set of techniques from neuroscience for mapping biological quantities (computational maps) into spatial representations of the human brain as functional cortical tomography, generating massive data. Our goal is to understand cortical reorganization after a stroke and to develop models for optimizing rehabilitation with non-invasive electroencephalography. The challenge is to obtain insight into brain functioning, in order to develop predictive computational models to increase patient outcome. There are many EEG features that still need to be explored with respect to cortical reorganization. In the present work we use independent component analysis, and data visualization mapping as tools for sensemaking. Our results show activity patterns over the sensorimotor cortex, involved in the execution and association of movements; our results further supports the usefulness of inverse mapping methods and generative models for functional brain mapping in the context of non-invasive monitoring of brain activity.", 
    "editor": [
      {
        "familyName": "B\u00f6hm", 
        "givenName": "Christian", 
        "type": "Person"
      }, 
      {
        "familyName": "Khuri", 
        "givenName": "Sami", 
        "type": "Person"
      }, 
      {
        "familyName": "Lhotsk\u00e1", 
        "givenName": "Lenka", 
        "type": "Person"
      }, 
      {
        "familyName": "Renda", 
        "givenName": "M. Elena", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-32395-9_13", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-32394-2", 
        "978-3-642-32395-9"
      ], 
      "name": "Information Technology in Bio- and Medical Informatics", 
      "type": "Book"
    }, 
    "name": "Computational Sensemaking on Examples of Knowledge Discovery from Neuroscience Data: Towards Enhancing Stroke Rehabilitation", 
    "pagination": "166-168", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-32395-9_13"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9bb5b54ab1e1d9d00bf91602d79397c40490028941f80062a54d5f8f2966f443"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032685364"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-32395-9_13", 
      "https://app.dimensions.ai/details/publication/pub.1032685364"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T16:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000263.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-32395-9_13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-32395-9_13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-32395-9_13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-32395-9_13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-32395-9_13'


 

This table displays all metadata directly associated to this object as RDF triples.

137 TRIPLES      23 PREDICATES      35 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-32395-9_13 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author Ne14f824cf990436d87a7a146dc6044f3
4 schema:citation sg:pub.10.1007/978-3-642-25364-5_11
5 sg:pub.10.1007/s11517-011-0799-y
6 https://doi.org/10.1002/hbm.10061
7 https://doi.org/10.1016/0165-1684(94)90029-9
8 https://doi.org/10.1016/j.jneumeth.2003.10.009
9 https://doi.org/10.1056/nejmoa0911341
10 https://doi.org/10.1109/icorr.2009.5209472
11 https://doi.org/10.1260/2040-2295.1.2.197
12 schema:datePublished 2012
13 schema:datePublishedReg 2012-01-01
14 schema:description Strokes are often associated with persistent impairment of a lower limb. Functional brain mapping is a set of techniques from neuroscience for mapping biological quantities (computational maps) into spatial representations of the human brain as functional cortical tomography, generating massive data. Our goal is to understand cortical reorganization after a stroke and to develop models for optimizing rehabilitation with non-invasive electroencephalography. The challenge is to obtain insight into brain functioning, in order to develop predictive computational models to increase patient outcome. There are many EEG features that still need to be explored with respect to cortical reorganization. In the present work we use independent component analysis, and data visualization mapping as tools for sensemaking. Our results show activity patterns over the sensorimotor cortex, involved in the execution and association of movements; our results further supports the usefulness of inverse mapping methods and generative models for functional brain mapping in the context of non-invasive monitoring of brain activity.
15 schema:editor Nfb246bf3f5f345dda9c9fd037306e42d
16 schema:genre chapter
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf Ndbb17a64ff2e4d0cb39ad17f5c563c41
20 schema:name Computational Sensemaking on Examples of Knowledge Discovery from Neuroscience Data: Towards Enhancing Stroke Rehabilitation
21 schema:pagination 166-168
22 schema:productId N18dda46f70964fc8aa1df6c809b745a3
23 N98150532086f4dfaa90ba0fb5b21653b
24 Nf868fc0097fb406f9803a55fcca5031f
25 schema:publisher N0fe59fd4e0dc4c42a58f403def909251
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032685364
27 https://doi.org/10.1007/978-3-642-32395-9_13
28 schema:sdDatePublished 2019-04-15T16:17
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N111b8e1512df4e07beac908470d81f8b
31 schema:url http://link.springer.com/10.1007/978-3-642-32395-9_13
32 sgo:license sg:explorer/license/
33 sgo:sdDataset chapters
34 rdf:type schema:Chapter
35 N0fe59fd4e0dc4c42a58f403def909251 schema:location Berlin, Heidelberg
36 schema:name Springer Berlin Heidelberg
37 rdf:type schema:Organisation
38 N111b8e1512df4e07beac908470d81f8b schema:name Springer Nature - SN SciGraph project
39 rdf:type schema:Organization
40 N18dda46f70964fc8aa1df6c809b745a3 schema:name dimensions_id
41 schema:value pub.1032685364
42 rdf:type schema:PropertyValue
43 N229f3a65119e45f18656d248191754b9 rdf:first N885866f4530345378d08137b2b685473
44 rdf:rest N4be191448f494b8a9a1af771b512af72
45 N3655c47ee5694b7e8ab300d79f4908de schema:familyName Renda
46 schema:givenName M. Elena
47 rdf:type schema:Person
48 N3d56e87a0d16468b83415bf19a4a21b3 rdf:first Nbf463c681e074253bad39e60fbf31c9e
49 rdf:rest N229f3a65119e45f18656d248191754b9
50 N4323c54cb5fa4287b02de2c470818b01 rdf:first sg:person.0631232046.28
51 rdf:rest rdf:nil
52 N4be191448f494b8a9a1af771b512af72 rdf:first N3655c47ee5694b7e8ab300d79f4908de
53 rdf:rest rdf:nil
54 N885866f4530345378d08137b2b685473 schema:familyName Lhotská
55 schema:givenName Lenka
56 rdf:type schema:Person
57 N98150532086f4dfaa90ba0fb5b21653b schema:name readcube_id
58 schema:value 9bb5b54ab1e1d9d00bf91602d79397c40490028941f80062a54d5f8f2966f443
59 rdf:type schema:PropertyValue
60 Nba65e7d8dd9d4402bc665da1eafab56e rdf:first sg:person.01323525674.95
61 rdf:rest Ne4cdac34e3724411845eb686a4edc0a2
62 Nbf463c681e074253bad39e60fbf31c9e schema:familyName Khuri
63 schema:givenName Sami
64 rdf:type schema:Person
65 Ndba8a7cde57743359911a01bac882ee1 rdf:first sg:person.01137217027.58
66 rdf:rest Nba65e7d8dd9d4402bc665da1eafab56e
67 Ndbb17a64ff2e4d0cb39ad17f5c563c41 schema:isbn 978-3-642-32394-2
68 978-3-642-32395-9
69 schema:name Information Technology in Bio- and Medical Informatics
70 rdf:type schema:Book
71 Ne14f824cf990436d87a7a146dc6044f3 rdf:first sg:person.015335163460.76
72 rdf:rest Ndba8a7cde57743359911a01bac882ee1
73 Ne4cdac34e3724411845eb686a4edc0a2 rdf:first sg:person.0743372564.39
74 rdf:rest N4323c54cb5fa4287b02de2c470818b01
75 Nea20209cfd024bfcbe9270c53e28acae schema:familyName Böhm
76 schema:givenName Christian
77 rdf:type schema:Person
78 Nf868fc0097fb406f9803a55fcca5031f schema:name doi
79 schema:value 10.1007/978-3-642-32395-9_13
80 rdf:type schema:PropertyValue
81 Nfb246bf3f5f345dda9c9fd037306e42d rdf:first Nea20209cfd024bfcbe9270c53e28acae
82 rdf:rest N3d56e87a0d16468b83415bf19a4a21b3
83 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
84 schema:name Medical and Health Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
87 schema:name Neurosciences
88 rdf:type schema:DefinedTerm
89 sg:person.01137217027.58 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
90 schema:familyName Scherer
91 schema:givenName Reinhold
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137217027.58
93 rdf:type schema:Person
94 sg:person.01323525674.95 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
95 schema:familyName Seeber
96 schema:givenName Martin
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323525674.95
98 rdf:type schema:Person
99 sg:person.015335163460.76 schema:affiliation https://www.grid.ac/institutes/grid.11598.34
100 schema:familyName Holzinger
101 schema:givenName Andreas
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015335163460.76
103 rdf:type schema:Person
104 sg:person.0631232046.28 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
105 schema:familyName Müller-Putz
106 schema:givenName Gernot
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631232046.28
108 rdf:type schema:Person
109 sg:person.0743372564.39 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
110 schema:familyName Wagner
111 schema:givenName Johanna
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743372564.39
113 rdf:type schema:Person
114 sg:pub.10.1007/978-3-642-25364-5_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010327917
115 https://doi.org/10.1007/978-3-642-25364-5_11
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s11517-011-0799-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1032052892
118 https://doi.org/10.1007/s11517-011-0799-y
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1002/hbm.10061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035264981
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/0165-1684(94)90029-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027445618
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.jneumeth.2003.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019572247
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1056/nejmoa0911341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036272174
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1109/icorr.2009.5209472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093216033
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1260/2040-2295.1.2.197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064586430
131 rdf:type schema:CreativeWork
132 https://www.grid.ac/institutes/grid.11598.34 schema:alternateName Medical University of Graz
133 schema:name Institute for Medical Informatics, Statistics & Documentation, Research Unit HCI4MED, Medical University Graz, A-8036 Graz, Austria
134 rdf:type schema:Organization
135 https://www.grid.ac/institutes/grid.410413.3 schema:alternateName Graz University of Technology
136 schema:name Institute for Knowledge Discovery, Laboratory of Brain-Computer Interfaces, Graz University of Technology, A-8010 Graz, Austria
137 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...