On the Controversy Around Daganzo’s Requiem for and Aw–Rascle’s Resurrection of Second-Order Traffic Flow Models View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2013

AUTHORS

Luigi Ambrosio , Alberto Bressan , Dirk Helbing , Axel Klar , Enrique Zuazua , Anders Johansson

ABSTRACT

Daganzo’s criticisms of second-order fluid approximations of traffic flow [C. Daganzo, Transp. Res. B 29, 277–286 (1995)] and Aw and Rascle’s proposal how to overcome them [A. Aw and M. Rascle, SIAM J. Appl. Math. 60, 916–938 (2000)] have stimulated an intensive scientific activity in the field of traffic modeling. Here, we will revisit their arguments and the interpretations behind them. We will start by analyzing the linear stability of traffic models, which is a widely established approach to study the ability of traffic models to describe emergent traffic jams. Besides deriving a collection of useful formulas for stability analyses, the main attention is put on the characteristic speeds, which are related to the group velocities of the linearized model equations. Most macroscopic traffic models with a dynamic velocity equation appear to predict two characteristic speeds, one of which is faster than the average velocity. This has been claimed to constitute a theoretical inconsistency. We will carefully discuss arguments for and against this view. In particular, we will shed some new light on the problem by comparing Payne’s macroscopic traffic model with the Aw–Rascle model and macroscopic with microscopic traffic models. More... »

PAGES

271-302

Book

TITLE

Modelling and Optimisation of Flows on Networks

ISBN

978-3-642-32159-7
978-3-642-32160-3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-32160-3_4

DOI

http://dx.doi.org/10.1007/978-3-642-32160-3_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039699170


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Ambrosio", 
        "givenName": "Luigi", 
        "id": "sg:person.012621721115.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Bressan", 
        "givenName": "Alberto", 
        "id": "sg:person.0754214334.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754214334.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute of Technology in Zurich", 
          "id": "https://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "ETH Zurich, UNO D11, Universit\u00e4tstr. 41, 8092\u00a0Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Helbing", 
        "givenName": "Dirk", 
        "id": "sg:person.01127352226.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127352226.45"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Klar", 
        "givenName": "Axel", 
        "id": "sg:person.010553155452.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010553155452.86"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Zuazua", 
        "givenName": "Enrique", 
        "id": "sg:person.016600410137.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016600410137.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute of Technology in Zurich", 
          "id": "https://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "ETH Zurich, UNO D11, Universit\u00e4tstr. 41, 8092\u00a0Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Johansson", 
        "givenName": "Anders", 
        "id": "sg:person.0645331745.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645331745.19"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00205-007-0061-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010071544", 
          "https://doi.org/10.1007/s00205-007-0061-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00205-007-0061-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010071544", 
          "https://doi.org/10.1007/s00205-007-0061-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0191-2615(99)00017-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018084562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03081067908717157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021367297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0191-2615(95)00007-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021620388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-1573(99)00117-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022980674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2009-00192-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025849890", 
          "https://doi.org/10.1140/epjb/e2009-00192-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trb.2006.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026534076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1054-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029747790", 
          "https://doi.org/10.1007/978-1-4612-1054-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1054-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029747790", 
          "https://doi.org/10.1007/978-1-4612-1054-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/65/9/203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032592899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8629-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033197262", 
          "https://doi.org/10.1007/978-3-0348-8629-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8629-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033197262", 
          "https://doi.org/10.1007/978-3-0348-8629-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mcm.2006.01.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038051546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03605300500358053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039898378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0191-2615(00)00050-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040663221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.59.239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042350688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.59.239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042350688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.73.1067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042579156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.73.1067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042579156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.1130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043506558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.1130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043506558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.59.6328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045174574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.59.6328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045174574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.73.066108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045216885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.73.066108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045216885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.62.1805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045624674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.62.1805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045624674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.48.r2335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060716075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.48.r2335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060716075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.51.1035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060717478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.51.1035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060717478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5992.790593", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061195341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/060656863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062849265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036139900378657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062874695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036139997332099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062875544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036139999356181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062875665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.4.1.42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064730303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.7.1.86", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064731792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/trsc.1070.0192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064734228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/wsc.1991.185683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086315560"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "Daganzo\u2019s criticisms of second-order fluid approximations of traffic flow [C. Daganzo, Transp. Res. B 29, 277\u2013286 (1995)] and Aw and Rascle\u2019s proposal how to overcome them [A. Aw and M. Rascle, SIAM J. Appl. Math. 60, 916\u2013938 (2000)] have stimulated an intensive scientific activity in the field of traffic modeling. Here, we will revisit their arguments and the interpretations behind them. We will start by analyzing the linear stability of traffic models, which is a widely established approach to study the ability of traffic models to describe emergent traffic jams. Besides deriving a collection of useful formulas for stability analyses, the main attention is put on the characteristic speeds, which are related to the group velocities of the linearized model equations. Most macroscopic traffic models with a dynamic velocity equation appear to predict two characteristic speeds, one of which is faster than the average velocity. This has been claimed to constitute a theoretical inconsistency. We will carefully discuss arguments for and against this view. In particular, we will shed some new light on the problem by comparing Payne\u2019s macroscopic traffic model with the Aw\u2013Rascle model and macroscopic with microscopic traffic models.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-32160-3_4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-32159-7", 
        "978-3-642-32160-3"
      ], 
      "name": "Modelling and Optimisation of Flows on Networks", 
      "type": "Book"
    }, 
    "name": "On the Controversy Around Daganzo\u2019s Requiem for and Aw\u2013Rascle\u2019s Resurrection of Second-Order Traffic Flow Models", 
    "pagination": "271-302", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-32160-3_4"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bd1bf723129a9d6a6584b4494b1f24634f19a41a49015219e1f39d518959d03e"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039699170"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-32160-3_4", 
      "https://app.dimensions.ai/details/publication/pub.1039699170"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T23:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000267.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-32160-3_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-32160-3_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-32160-3_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-32160-3_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-32160-3_4'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      22 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-32160-3_4 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N508bcf9812f147b399b5443504db61cd
4 schema:citation sg:pub.10.1007/978-1-4612-1054-2
5 sg:pub.10.1007/978-3-0348-8629-1
6 sg:pub.10.1007/s00205-007-0061-9
7 sg:pub.10.1140/epjb/e2009-00192-5
8 https://doi.org/10.1016/0191-2615(95)00007-z
9 https://doi.org/10.1016/j.mcm.2006.01.016
10 https://doi.org/10.1016/j.trb.2006.11.005
11 https://doi.org/10.1016/s0191-2615(00)00050-3
12 https://doi.org/10.1016/s0191-2615(99)00017-x
13 https://doi.org/10.1016/s0370-1573(99)00117-9
14 https://doi.org/10.1080/03081067908717157
15 https://doi.org/10.1080/03605300500358053
16 https://doi.org/10.1088/0034-4885/65/9/203
17 https://doi.org/10.1103/physreve.48.r2335
18 https://doi.org/10.1103/physreve.51.1035
19 https://doi.org/10.1103/physreve.59.239
20 https://doi.org/10.1103/physreve.59.6328
21 https://doi.org/10.1103/physreve.62.1805
22 https://doi.org/10.1103/physreve.73.066108
23 https://doi.org/10.1103/physrevlett.81.1130
24 https://doi.org/10.1103/revmodphys.73.1067
25 https://doi.org/10.1109/5992.790593
26 https://doi.org/10.1109/wsc.1991.185683
27 https://doi.org/10.1137/060656863
28 https://doi.org/10.1137/s0036139900378657
29 https://doi.org/10.1137/s0036139997332099
30 https://doi.org/10.1137/s0036139999356181
31 https://doi.org/10.1287/opre.4.1.42
32 https://doi.org/10.1287/opre.7.1.86
33 https://doi.org/10.1287/trsc.1070.0192
34 schema:datePublished 2013
35 schema:datePublishedReg 2013-01-01
36 schema:description Daganzo’s criticisms of second-order fluid approximations of traffic flow [C. Daganzo, Transp. Res. B 29, 277–286 (1995)] and Aw and Rascle’s proposal how to overcome them [A. Aw and M. Rascle, SIAM J. Appl. Math. 60, 916–938 (2000)] have stimulated an intensive scientific activity in the field of traffic modeling. Here, we will revisit their arguments and the interpretations behind them. We will start by analyzing the linear stability of traffic models, which is a widely established approach to study the ability of traffic models to describe emergent traffic jams. Besides deriving a collection of useful formulas for stability analyses, the main attention is put on the characteristic speeds, which are related to the group velocities of the linearized model equations. Most macroscopic traffic models with a dynamic velocity equation appear to predict two characteristic speeds, one of which is faster than the average velocity. This has been claimed to constitute a theoretical inconsistency. We will carefully discuss arguments for and against this view. In particular, we will shed some new light on the problem by comparing Payne’s macroscopic traffic model with the Aw–Rascle model and macroscopic with microscopic traffic models.
37 schema:genre chapter
38 schema:inLanguage en
39 schema:isAccessibleForFree true
40 schema:isPartOf N0fab30c6913f4640a879f42110e01390
41 schema:name On the Controversy Around Daganzo’s Requiem for and Aw–Rascle’s Resurrection of Second-Order Traffic Flow Models
42 schema:pagination 271-302
43 schema:productId Nc1564e5c978a4a9498b4db4daf09b66f
44 Ncd988a346c3d4a1c92d1004c39202bee
45 Nd2945894360f4bfcb05f7b248f637ada
46 schema:publisher Nfd6984a78e944d389ee6aff6c1524f5d
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039699170
48 https://doi.org/10.1007/978-3-642-32160-3_4
49 schema:sdDatePublished 2019-04-15T23:53
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N95c55726a1554bbba2abac6d5f27493a
52 schema:url http://link.springer.com/10.1007/978-3-642-32160-3_4
53 sgo:license sg:explorer/license/
54 sgo:sdDataset chapters
55 rdf:type schema:Chapter
56 N0fab30c6913f4640a879f42110e01390 schema:isbn 978-3-642-32159-7
57 978-3-642-32160-3
58 schema:name Modelling and Optimisation of Flows on Networks
59 rdf:type schema:Book
60 N2c58d01242174249a59077d363822389 rdf:first sg:person.0754214334.90
61 rdf:rest Na6d5b96d7e5949798140ca1f8af9756d
62 N508bcf9812f147b399b5443504db61cd rdf:first sg:person.012621721115.68
63 rdf:rest N2c58d01242174249a59077d363822389
64 N510a04be9944487da92243ad7b007e58 rdf:first sg:person.0645331745.19
65 rdf:rest rdf:nil
66 N95c55726a1554bbba2abac6d5f27493a schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 Na6d5b96d7e5949798140ca1f8af9756d rdf:first sg:person.01127352226.45
69 rdf:rest Nc9ada2c9e7674193a7c93d28292baf44
70 Nc1564e5c978a4a9498b4db4daf09b66f schema:name readcube_id
71 schema:value bd1bf723129a9d6a6584b4494b1f24634f19a41a49015219e1f39d518959d03e
72 rdf:type schema:PropertyValue
73 Nc3764cb4b9d74381a38070884ffe7899 rdf:first sg:person.016600410137.78
74 rdf:rest N510a04be9944487da92243ad7b007e58
75 Nc9ada2c9e7674193a7c93d28292baf44 rdf:first sg:person.010553155452.86
76 rdf:rest Nc3764cb4b9d74381a38070884ffe7899
77 Ncd988a346c3d4a1c92d1004c39202bee schema:name doi
78 schema:value 10.1007/978-3-642-32160-3_4
79 rdf:type schema:PropertyValue
80 Nd2945894360f4bfcb05f7b248f637ada schema:name dimensions_id
81 schema:value pub.1039699170
82 rdf:type schema:PropertyValue
83 Nfd6984a78e944d389ee6aff6c1524f5d schema:location Berlin, Heidelberg
84 schema:name Springer Berlin Heidelberg
85 rdf:type schema:Organisation
86 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
87 schema:name Psychology and Cognitive Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
90 schema:name Psychology
91 rdf:type schema:DefinedTerm
92 sg:person.010553155452.86 schema:familyName Klar
93 schema:givenName Axel
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010553155452.86
95 rdf:type schema:Person
96 sg:person.01127352226.45 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
97 schema:familyName Helbing
98 schema:givenName Dirk
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127352226.45
100 rdf:type schema:Person
101 sg:person.012621721115.68 schema:familyName Ambrosio
102 schema:givenName Luigi
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68
104 rdf:type schema:Person
105 sg:person.016600410137.78 schema:familyName Zuazua
106 schema:givenName Enrique
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016600410137.78
108 rdf:type schema:Person
109 sg:person.0645331745.19 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
110 schema:familyName Johansson
111 schema:givenName Anders
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645331745.19
113 rdf:type schema:Person
114 sg:person.0754214334.90 schema:familyName Bressan
115 schema:givenName Alberto
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754214334.90
117 rdf:type schema:Person
118 sg:pub.10.1007/978-1-4612-1054-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029747790
119 https://doi.org/10.1007/978-1-4612-1054-2
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/978-3-0348-8629-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033197262
122 https://doi.org/10.1007/978-3-0348-8629-1
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s00205-007-0061-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010071544
125 https://doi.org/10.1007/s00205-007-0061-9
126 rdf:type schema:CreativeWork
127 sg:pub.10.1140/epjb/e2009-00192-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025849890
128 https://doi.org/10.1140/epjb/e2009-00192-5
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/0191-2615(95)00007-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1021620388
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.mcm.2006.01.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038051546
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.trb.2006.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026534076
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/s0191-2615(00)00050-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040663221
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/s0191-2615(99)00017-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018084562
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/s0370-1573(99)00117-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022980674
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1080/03081067908717157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021367297
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1080/03605300500358053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039898378
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1088/0034-4885/65/9/203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032592899
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physreve.48.r2335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060716075
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physreve.51.1035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060717478
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/physreve.59.239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042350688
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1103/physreve.59.6328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045174574
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1103/physreve.62.1805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045624674
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physreve.73.066108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045216885
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/physrevlett.81.1130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043506558
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/revmodphys.73.1067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042579156
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/5992.790593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061195341
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/wsc.1991.185683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086315560
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1137/060656863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062849265
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1137/s0036139900378657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062874695
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1137/s0036139997332099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062875544
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1137/s0036139999356181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062875665
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1287/opre.4.1.42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064730303
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1287/opre.7.1.86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064731792
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1287/trsc.1070.0192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064734228
181 rdf:type schema:CreativeWork
182 https://www.grid.ac/institutes/grid.5801.c schema:alternateName Swiss Federal Institute of Technology in Zurich
183 schema:name ETH Zurich, UNO D11, Universitätstr. 41, 8092 Zurich, Switzerland
184 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...