On the Controversy Around Daganzo’s Requiem for and Aw–Rascle’s Resurrection of Second-Order Traffic Flow Models View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2013

AUTHORS

Luigi Ambrosio , Alberto Bressan , Dirk Helbing , Axel Klar , Enrique Zuazua , Anders Johansson

ABSTRACT

Daganzo’s criticisms of second-order fluid approximations of traffic flow [C. Daganzo, Transp. Res. B 29, 277–286 (1995)] and Aw and Rascle’s proposal how to overcome them [A. Aw and M. Rascle, SIAM J. Appl. Math. 60, 916–938 (2000)] have stimulated an intensive scientific activity in the field of traffic modeling. Here, we will revisit their arguments and the interpretations behind them. We will start by analyzing the linear stability of traffic models, which is a widely established approach to study the ability of traffic models to describe emergent traffic jams. Besides deriving a collection of useful formulas for stability analyses, the main attention is put on the characteristic speeds, which are related to the group velocities of the linearized model equations. Most macroscopic traffic models with a dynamic velocity equation appear to predict two characteristic speeds, one of which is faster than the average velocity. This has been claimed to constitute a theoretical inconsistency. We will carefully discuss arguments for and against this view. In particular, we will shed some new light on the problem by comparing Payne’s macroscopic traffic model with the Aw–Rascle model and macroscopic with microscopic traffic models. More... »

PAGES

271-302

Book

TITLE

Modelling and Optimisation of Flows on Networks

ISBN

978-3-642-32159-7
978-3-642-32160-3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-32160-3_4

DOI

http://dx.doi.org/10.1007/978-3-642-32160-3_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039699170


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Ambrosio", 
        "givenName": "Luigi", 
        "id": "sg:person.012621721115.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Bressan", 
        "givenName": "Alberto", 
        "id": "sg:person.0754214334.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754214334.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute of Technology in Zurich", 
          "id": "https://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "ETH Zurich, UNO D11, Universit\u00e4tstr. 41, 8092\u00a0Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Helbing", 
        "givenName": "Dirk", 
        "id": "sg:person.01127352226.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127352226.45"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Klar", 
        "givenName": "Axel", 
        "id": "sg:person.010553155452.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010553155452.86"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Zuazua", 
        "givenName": "Enrique", 
        "id": "sg:person.016600410137.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016600410137.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute of Technology in Zurich", 
          "id": "https://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "ETH Zurich, UNO D11, Universit\u00e4tstr. 41, 8092\u00a0Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Johansson", 
        "givenName": "Anders", 
        "id": "sg:person.0645331745.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645331745.19"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00205-007-0061-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010071544", 
          "https://doi.org/10.1007/s00205-007-0061-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00205-007-0061-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010071544", 
          "https://doi.org/10.1007/s00205-007-0061-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0191-2615(99)00017-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018084562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03081067908717157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021367297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0191-2615(95)00007-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021620388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-1573(99)00117-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022980674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2009-00192-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025849890", 
          "https://doi.org/10.1140/epjb/e2009-00192-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trb.2006.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026534076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1054-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029747790", 
          "https://doi.org/10.1007/978-1-4612-1054-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1054-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029747790", 
          "https://doi.org/10.1007/978-1-4612-1054-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/65/9/203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032592899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8629-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033197262", 
          "https://doi.org/10.1007/978-3-0348-8629-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8629-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033197262", 
          "https://doi.org/10.1007/978-3-0348-8629-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mcm.2006.01.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038051546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03605300500358053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039898378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0191-2615(00)00050-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040663221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.59.239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042350688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.59.239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042350688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.73.1067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042579156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.73.1067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042579156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.1130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043506558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.1130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043506558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.59.6328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045174574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.59.6328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045174574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.73.066108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045216885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.73.066108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045216885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.62.1805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045624674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.62.1805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045624674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.48.r2335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060716075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.48.r2335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060716075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.51.1035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060717478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.51.1035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060717478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5992.790593", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061195341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/060656863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062849265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036139900378657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062874695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036139997332099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062875544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036139999356181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062875665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.4.1.42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064730303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.7.1.86", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064731792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/trsc.1070.0192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064734228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/wsc.1991.185683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086315560"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "Daganzo\u2019s criticisms of second-order fluid approximations of traffic flow [C. Daganzo, Transp. Res. B 29, 277\u2013286 (1995)] and Aw and Rascle\u2019s proposal how to overcome them [A. Aw and M. Rascle, SIAM J. Appl. Math. 60, 916\u2013938 (2000)] have stimulated an intensive scientific activity in the field of traffic modeling. Here, we will revisit their arguments and the interpretations behind them. We will start by analyzing the linear stability of traffic models, which is a widely established approach to study the ability of traffic models to describe emergent traffic jams. Besides deriving a collection of useful formulas for stability analyses, the main attention is put on the characteristic speeds, which are related to the group velocities of the linearized model equations. Most macroscopic traffic models with a dynamic velocity equation appear to predict two characteristic speeds, one of which is faster than the average velocity. This has been claimed to constitute a theoretical inconsistency. We will carefully discuss arguments for and against this view. In particular, we will shed some new light on the problem by comparing Payne\u2019s macroscopic traffic model with the Aw\u2013Rascle model and macroscopic with microscopic traffic models.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-32160-3_4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-32159-7", 
        "978-3-642-32160-3"
      ], 
      "name": "Modelling and Optimisation of Flows on Networks", 
      "type": "Book"
    }, 
    "name": "On the Controversy Around Daganzo\u2019s Requiem for and Aw\u2013Rascle\u2019s Resurrection of Second-Order Traffic Flow Models", 
    "pagination": "271-302", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-32160-3_4"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bd1bf723129a9d6a6584b4494b1f24634f19a41a49015219e1f39d518959d03e"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039699170"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-32160-3_4", 
      "https://app.dimensions.ai/details/publication/pub.1039699170"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T23:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000267.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-32160-3_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-32160-3_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-32160-3_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-32160-3_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-32160-3_4'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      22 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-32160-3_4 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N85c92f81f0014839a2d0bd26098f36ea
4 schema:citation sg:pub.10.1007/978-1-4612-1054-2
5 sg:pub.10.1007/978-3-0348-8629-1
6 sg:pub.10.1007/s00205-007-0061-9
7 sg:pub.10.1140/epjb/e2009-00192-5
8 https://doi.org/10.1016/0191-2615(95)00007-z
9 https://doi.org/10.1016/j.mcm.2006.01.016
10 https://doi.org/10.1016/j.trb.2006.11.005
11 https://doi.org/10.1016/s0191-2615(00)00050-3
12 https://doi.org/10.1016/s0191-2615(99)00017-x
13 https://doi.org/10.1016/s0370-1573(99)00117-9
14 https://doi.org/10.1080/03081067908717157
15 https://doi.org/10.1080/03605300500358053
16 https://doi.org/10.1088/0034-4885/65/9/203
17 https://doi.org/10.1103/physreve.48.r2335
18 https://doi.org/10.1103/physreve.51.1035
19 https://doi.org/10.1103/physreve.59.239
20 https://doi.org/10.1103/physreve.59.6328
21 https://doi.org/10.1103/physreve.62.1805
22 https://doi.org/10.1103/physreve.73.066108
23 https://doi.org/10.1103/physrevlett.81.1130
24 https://doi.org/10.1103/revmodphys.73.1067
25 https://doi.org/10.1109/5992.790593
26 https://doi.org/10.1109/wsc.1991.185683
27 https://doi.org/10.1137/060656863
28 https://doi.org/10.1137/s0036139900378657
29 https://doi.org/10.1137/s0036139997332099
30 https://doi.org/10.1137/s0036139999356181
31 https://doi.org/10.1287/opre.4.1.42
32 https://doi.org/10.1287/opre.7.1.86
33 https://doi.org/10.1287/trsc.1070.0192
34 schema:datePublished 2013
35 schema:datePublishedReg 2013-01-01
36 schema:description Daganzo’s criticisms of second-order fluid approximations of traffic flow [C. Daganzo, Transp. Res. B 29, 277–286 (1995)] and Aw and Rascle’s proposal how to overcome them [A. Aw and M. Rascle, SIAM J. Appl. Math. 60, 916–938 (2000)] have stimulated an intensive scientific activity in the field of traffic modeling. Here, we will revisit their arguments and the interpretations behind them. We will start by analyzing the linear stability of traffic models, which is a widely established approach to study the ability of traffic models to describe emergent traffic jams. Besides deriving a collection of useful formulas for stability analyses, the main attention is put on the characteristic speeds, which are related to the group velocities of the linearized model equations. Most macroscopic traffic models with a dynamic velocity equation appear to predict two characteristic speeds, one of which is faster than the average velocity. This has been claimed to constitute a theoretical inconsistency. We will carefully discuss arguments for and against this view. In particular, we will shed some new light on the problem by comparing Payne’s macroscopic traffic model with the Aw–Rascle model and macroscopic with microscopic traffic models.
37 schema:genre chapter
38 schema:inLanguage en
39 schema:isAccessibleForFree true
40 schema:isPartOf Nb1cef0a02a3d46c6836db5fc88a480cf
41 schema:name On the Controversy Around Daganzo’s Requiem for and Aw–Rascle’s Resurrection of Second-Order Traffic Flow Models
42 schema:pagination 271-302
43 schema:productId N6f2ac6b0de804da5ab52a441f7f47241
44 N781b420940cb42459d6b9aca50c2646f
45 N78223589f24948dea44ecb0783736eaf
46 schema:publisher N490fac38b6804164ba098def4d3a2cdf
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039699170
48 https://doi.org/10.1007/978-3-642-32160-3_4
49 schema:sdDatePublished 2019-04-15T23:53
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N41dd257a8d3b4a7486b731ec47cff4ac
52 schema:url http://link.springer.com/10.1007/978-3-642-32160-3_4
53 sgo:license sg:explorer/license/
54 sgo:sdDataset chapters
55 rdf:type schema:Chapter
56 N244ad479f4f24342bec0620981c73bd5 rdf:first sg:person.01127352226.45
57 rdf:rest Ncb2eacdfd7f14d6f8220aef33a18b562
58 N3dbb419a47744b4b922fbb8e3ee0b6a6 rdf:first sg:person.016600410137.78
59 rdf:rest N61a4959ad9af48369e5bbe98d3155dd0
60 N41786e6d7fda426389531f0803528d45 rdf:first sg:person.0754214334.90
61 rdf:rest N244ad479f4f24342bec0620981c73bd5
62 N41dd257a8d3b4a7486b731ec47cff4ac schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N490fac38b6804164ba098def4d3a2cdf schema:location Berlin, Heidelberg
65 schema:name Springer Berlin Heidelberg
66 rdf:type schema:Organisation
67 N61a4959ad9af48369e5bbe98d3155dd0 rdf:first sg:person.0645331745.19
68 rdf:rest rdf:nil
69 N6f2ac6b0de804da5ab52a441f7f47241 schema:name doi
70 schema:value 10.1007/978-3-642-32160-3_4
71 rdf:type schema:PropertyValue
72 N781b420940cb42459d6b9aca50c2646f schema:name readcube_id
73 schema:value bd1bf723129a9d6a6584b4494b1f24634f19a41a49015219e1f39d518959d03e
74 rdf:type schema:PropertyValue
75 N78223589f24948dea44ecb0783736eaf schema:name dimensions_id
76 schema:value pub.1039699170
77 rdf:type schema:PropertyValue
78 N85c92f81f0014839a2d0bd26098f36ea rdf:first sg:person.012621721115.68
79 rdf:rest N41786e6d7fda426389531f0803528d45
80 Nb1cef0a02a3d46c6836db5fc88a480cf schema:isbn 978-3-642-32159-7
81 978-3-642-32160-3
82 schema:name Modelling and Optimisation of Flows on Networks
83 rdf:type schema:Book
84 Ncb2eacdfd7f14d6f8220aef33a18b562 rdf:first sg:person.010553155452.86
85 rdf:rest N3dbb419a47744b4b922fbb8e3ee0b6a6
86 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
87 schema:name Psychology and Cognitive Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
90 schema:name Psychology
91 rdf:type schema:DefinedTerm
92 sg:person.010553155452.86 schema:familyName Klar
93 schema:givenName Axel
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010553155452.86
95 rdf:type schema:Person
96 sg:person.01127352226.45 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
97 schema:familyName Helbing
98 schema:givenName Dirk
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127352226.45
100 rdf:type schema:Person
101 sg:person.012621721115.68 schema:familyName Ambrosio
102 schema:givenName Luigi
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68
104 rdf:type schema:Person
105 sg:person.016600410137.78 schema:familyName Zuazua
106 schema:givenName Enrique
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016600410137.78
108 rdf:type schema:Person
109 sg:person.0645331745.19 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
110 schema:familyName Johansson
111 schema:givenName Anders
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645331745.19
113 rdf:type schema:Person
114 sg:person.0754214334.90 schema:familyName Bressan
115 schema:givenName Alberto
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754214334.90
117 rdf:type schema:Person
118 sg:pub.10.1007/978-1-4612-1054-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029747790
119 https://doi.org/10.1007/978-1-4612-1054-2
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/978-3-0348-8629-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033197262
122 https://doi.org/10.1007/978-3-0348-8629-1
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s00205-007-0061-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010071544
125 https://doi.org/10.1007/s00205-007-0061-9
126 rdf:type schema:CreativeWork
127 sg:pub.10.1140/epjb/e2009-00192-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025849890
128 https://doi.org/10.1140/epjb/e2009-00192-5
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/0191-2615(95)00007-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1021620388
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.mcm.2006.01.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038051546
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.trb.2006.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026534076
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/s0191-2615(00)00050-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040663221
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/s0191-2615(99)00017-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018084562
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/s0370-1573(99)00117-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022980674
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1080/03081067908717157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021367297
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1080/03605300500358053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039898378
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1088/0034-4885/65/9/203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032592899
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physreve.48.r2335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060716075
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physreve.51.1035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060717478
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/physreve.59.239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042350688
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1103/physreve.59.6328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045174574
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1103/physreve.62.1805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045624674
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physreve.73.066108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045216885
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/physrevlett.81.1130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043506558
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/revmodphys.73.1067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042579156
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/5992.790593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061195341
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/wsc.1991.185683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086315560
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1137/060656863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062849265
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1137/s0036139900378657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062874695
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1137/s0036139997332099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062875544
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1137/s0036139999356181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062875665
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1287/opre.4.1.42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064730303
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1287/opre.7.1.86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064731792
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1287/trsc.1070.0192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064734228
181 rdf:type schema:CreativeWork
182 https://www.grid.ac/institutes/grid.5801.c schema:alternateName Swiss Federal Institute of Technology in Zurich
183 schema:name ETH Zurich, UNO D11, Universitätstr. 41, 8092 Zurich, Switzerland
184 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...