Derivation of Non-local Macroscopic Traffic Equations and Consistent Traffic Pressures from Microscopic Car-Following Models View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2013

AUTHORS

Luigi Ambrosio , Alberto Bressan , Dirk Helbing , Axel Klar , Enrique Zuazua

ABSTRACT

This contribution compares several different approaches allowing one to derive macroscopic traffic equation directly from microscopic car-following models. While it is shown that some conventional approaches lead to theoretical problems, it is proposed to use an approach reminding of smoothed particle hydrodynamics to avoid gradient expansions. The derivation circumvents approximations and, therefore, demonstrates the large range of validity of macroscopic traffic equations, without the need of averaging over many vehicles. It also gives an expression for the “traffic pressure”, which generalizes previously used formulas. Furthermore, the method avoids theoretical inconsistencies of macroscopic traffic models, which have been criticized in the past by Daganzo and others. More... »

PAGES

247-269

References to SciGraph publications

Book

TITLE

Modelling and Optimisation of Flows on Networks

ISBN

978-3-642-32159-7
978-3-642-32160-3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-32160-3_3

DOI

http://dx.doi.org/10.1007/978-3-642-32160-3_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015167263


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Ambrosio", 
        "givenName": "Luigi", 
        "id": "sg:person.012621721115.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Bressan", 
        "givenName": "Alberto", 
        "id": "sg:person.0754214334.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754214334.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute of Technology in Zurich", 
          "id": "https://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "ETH Zurich, UNO D11, Universit\u00e4tstr. 41, 8092\u00a0Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Helbing", 
        "givenName": "Dirk", 
        "id": "sg:person.01127352226.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127352226.45"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Klar", 
        "givenName": "Axel", 
        "id": "sg:person.010553155452.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010553155452.86"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Zuazua", 
        "givenName": "Enrique", 
        "id": "sg:person.016600410137.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016600410137.78"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0191-2615(81)90037-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000047419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0191-2615(81)90037-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000047419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.59.r2505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003057527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.59.r2505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003057527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0895-7177(02)80019-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020958812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0895-7177(02)80019-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020958812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0191-2615(95)00007-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021620388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-1573(99)00117-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022980674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2009-00182-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023078056", 
          "https://doi.org/10.1140/epjb/e2009-00182-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/65/9/203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032592899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00010906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033238500", 
          "https://doi.org/10.1007/pl00010906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.64.056126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036535344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.64.056126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036535344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.59.239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042350688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.59.239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042350688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.73.1067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042579156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.73.1067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042579156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.59.6328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045174574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.59.6328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045174574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.62.1805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045624674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.62.1805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045624674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.48.r2335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060716075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.48.r2335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060716075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.51.1035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060717478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.51.1035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060717478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.61.1056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060724747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.61.1056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060724747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5992.790593", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061195341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/060678415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062850003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036139900380955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062874703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036139997332099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062875544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.9.2.209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064731979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/wsc.1991.185683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086315560"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "This contribution compares several different approaches allowing one to derive macroscopic traffic equation directly from microscopic car-following models. While it is shown that some conventional approaches lead to theoretical problems, it is proposed to use an approach reminding of smoothed particle hydrodynamics to avoid gradient expansions. The derivation circumvents approximations and, therefore, demonstrates the large range of validity of macroscopic traffic equations, without the need of averaging over many vehicles. It also gives an expression for the \u201ctraffic pressure\u201d, which generalizes previously used formulas. Furthermore, the method avoids theoretical inconsistencies of macroscopic traffic models, which have been criticized in the past by Daganzo and others.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-32160-3_3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-32159-7", 
        "978-3-642-32160-3"
      ], 
      "name": "Modelling and Optimisation of Flows on Networks", 
      "type": "Book"
    }, 
    "name": "Derivation of Non-local Macroscopic Traffic Equations and Consistent Traffic Pressures from Microscopic Car-Following Models", 
    "pagination": "247-269", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-32160-3_3"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "48432b83310ab04b9d969e5c89b24b28e9b5183aace76f5c8ad86412969a05b2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015167263"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-32160-3_3", 
      "https://app.dimensions.ai/details/publication/pub.1015167263"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T23:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000252.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-32160-3_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-32160-3_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-32160-3_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-32160-3_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-32160-3_3'


 

This table displays all metadata directly associated to this object as RDF triples.

151 TRIPLES      22 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-32160-3_3 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Neea4b1aab30146f88b6b8e74c475c7df
4 schema:citation sg:pub.10.1007/pl00010906
5 sg:pub.10.1140/epjb/e2009-00182-7
6 https://doi.org/10.1016/0191-2615(81)90037-0
7 https://doi.org/10.1016/0191-2615(95)00007-z
8 https://doi.org/10.1016/s0370-1573(99)00117-9
9 https://doi.org/10.1016/s0895-7177(02)80019-x
10 https://doi.org/10.1088/0034-4885/65/9/203
11 https://doi.org/10.1103/physreve.48.r2335
12 https://doi.org/10.1103/physreve.51.1035
13 https://doi.org/10.1103/physreve.59.239
14 https://doi.org/10.1103/physreve.59.6328
15 https://doi.org/10.1103/physreve.59.r2505
16 https://doi.org/10.1103/physreve.61.1056
17 https://doi.org/10.1103/physreve.62.1805
18 https://doi.org/10.1103/physreve.64.056126
19 https://doi.org/10.1103/revmodphys.73.1067
20 https://doi.org/10.1109/5992.790593
21 https://doi.org/10.1109/wsc.1991.185683
22 https://doi.org/10.1137/060678415
23 https://doi.org/10.1137/s0036139900380955
24 https://doi.org/10.1137/s0036139997332099
25 https://doi.org/10.1287/opre.9.2.209
26 schema:datePublished 2013
27 schema:datePublishedReg 2013-01-01
28 schema:description This contribution compares several different approaches allowing one to derive macroscopic traffic equation directly from microscopic car-following models. While it is shown that some conventional approaches lead to theoretical problems, it is proposed to use an approach reminding of smoothed particle hydrodynamics to avoid gradient expansions. The derivation circumvents approximations and, therefore, demonstrates the large range of validity of macroscopic traffic equations, without the need of averaging over many vehicles. It also gives an expression for the “traffic pressure”, which generalizes previously used formulas. Furthermore, the method avoids theoretical inconsistencies of macroscopic traffic models, which have been criticized in the past by Daganzo and others.
29 schema:genre chapter
30 schema:inLanguage en
31 schema:isAccessibleForFree true
32 schema:isPartOf Ndb47859c5f204095b4b98c4c0e2820d5
33 schema:name Derivation of Non-local Macroscopic Traffic Equations and Consistent Traffic Pressures from Microscopic Car-Following Models
34 schema:pagination 247-269
35 schema:productId N338cd21ab93d4a6380568d22448df66d
36 N39a8afc9b89d497a93dc8921ed0e28b0
37 N81f7e06216a3457493ee4f74c296be2e
38 schema:publisher Naa8a9160a18d4849afff8e12d22c9453
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015167263
40 https://doi.org/10.1007/978-3-642-32160-3_3
41 schema:sdDatePublished 2019-04-15T23:51
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher Nb5503968763346d390439af869863b73
44 schema:url http://link.springer.com/10.1007/978-3-642-32160-3_3
45 sgo:license sg:explorer/license/
46 sgo:sdDataset chapters
47 rdf:type schema:Chapter
48 N056ba45bbf23430a9708eacebc2ac6fe rdf:first sg:person.010553155452.86
49 rdf:rest Ne453339a5e1148faaf237b67286a820d
50 N338cd21ab93d4a6380568d22448df66d schema:name doi
51 schema:value 10.1007/978-3-642-32160-3_3
52 rdf:type schema:PropertyValue
53 N39a8afc9b89d497a93dc8921ed0e28b0 schema:name dimensions_id
54 schema:value pub.1015167263
55 rdf:type schema:PropertyValue
56 N53e70661d2694d5e98abe708e494a3de rdf:first sg:person.0754214334.90
57 rdf:rest Nd829a04c07054ac08636da9778a94f57
58 N81f7e06216a3457493ee4f74c296be2e schema:name readcube_id
59 schema:value 48432b83310ab04b9d969e5c89b24b28e9b5183aace76f5c8ad86412969a05b2
60 rdf:type schema:PropertyValue
61 Naa8a9160a18d4849afff8e12d22c9453 schema:location Berlin, Heidelberg
62 schema:name Springer Berlin Heidelberg
63 rdf:type schema:Organisation
64 Nb5503968763346d390439af869863b73 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 Nd829a04c07054ac08636da9778a94f57 rdf:first sg:person.01127352226.45
67 rdf:rest N056ba45bbf23430a9708eacebc2ac6fe
68 Ndb47859c5f204095b4b98c4c0e2820d5 schema:isbn 978-3-642-32159-7
69 978-3-642-32160-3
70 schema:name Modelling and Optimisation of Flows on Networks
71 rdf:type schema:Book
72 Ne453339a5e1148faaf237b67286a820d rdf:first sg:person.016600410137.78
73 rdf:rest rdf:nil
74 Neea4b1aab30146f88b6b8e74c475c7df rdf:first sg:person.012621721115.68
75 rdf:rest N53e70661d2694d5e98abe708e494a3de
76 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
77 schema:name Mathematical Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
80 schema:name Numerical and Computational Mathematics
81 rdf:type schema:DefinedTerm
82 sg:person.010553155452.86 schema:familyName Klar
83 schema:givenName Axel
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010553155452.86
85 rdf:type schema:Person
86 sg:person.01127352226.45 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
87 schema:familyName Helbing
88 schema:givenName Dirk
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127352226.45
90 rdf:type schema:Person
91 sg:person.012621721115.68 schema:familyName Ambrosio
92 schema:givenName Luigi
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68
94 rdf:type schema:Person
95 sg:person.016600410137.78 schema:familyName Zuazua
96 schema:givenName Enrique
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016600410137.78
98 rdf:type schema:Person
99 sg:person.0754214334.90 schema:familyName Bressan
100 schema:givenName Alberto
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754214334.90
102 rdf:type schema:Person
103 sg:pub.10.1007/pl00010906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033238500
104 https://doi.org/10.1007/pl00010906
105 rdf:type schema:CreativeWork
106 sg:pub.10.1140/epjb/e2009-00182-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023078056
107 https://doi.org/10.1140/epjb/e2009-00182-7
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/0191-2615(81)90037-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000047419
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/0191-2615(95)00007-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1021620388
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/s0370-1573(99)00117-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022980674
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/s0895-7177(02)80019-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020958812
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1088/0034-4885/65/9/203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032592899
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1103/physreve.48.r2335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060716075
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1103/physreve.51.1035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060717478
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1103/physreve.59.239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042350688
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1103/physreve.59.6328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045174574
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physreve.59.r2505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003057527
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physreve.61.1056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060724747
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physreve.62.1805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045624674
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physreve.64.056126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036535344
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/revmodphys.73.1067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042579156
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/5992.790593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061195341
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/wsc.1991.185683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086315560
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1137/060678415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062850003
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1137/s0036139900380955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062874703
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1137/s0036139997332099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062875544
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1287/opre.9.2.209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064731979
148 rdf:type schema:CreativeWork
149 https://www.grid.ac/institutes/grid.5801.c schema:alternateName Swiss Federal Institute of Technology in Zurich
150 schema:name ETH Zurich, UNO D11, Universitätstr. 41, 8092 Zurich, Switzerland
151 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...