Ranking Aggregation Based on Belief Function View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2012

AUTHORS

Andrea Argentini , Enrico Blanzieri

ABSTRACT

In this work we consider the case of the ranking aggregation problem that includes the true ranking in its formulation. The goal is to find an estimation of an unknown true ranking given a set of rankings provided by different quality experts. This is the case when bioinformatic experts provide ranked items involved in an unknown biological phenomenon regulated by its own physical reality. We devise an innovative solution called Belief Ranking Estimator (BRE), based on the belief function framework that permits to represent beliefs on the correctness of each item rank as well as uncertainty on the quality of the rankings from the subjective point of view of the expert. Moreover, weights computed using a true-ranking estimator are applied to the original belief basic assignment in order to take into account the quality of the input rankings. The results of an empirical comparison of BRE with weighting schema against competitor methods for ranking aggregation show that our method improves significantly the performance when the quality of the ranking is heterogeneous. More... »

PAGES

511-520

Book

TITLE

Advances in Computational Intelligence

ISBN

978-3-642-31717-0
978-3-642-31718-7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-31718-7_53

DOI

http://dx.doi.org/10.1007/978-3-642-31718-7_53

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031998461


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Trento", 
          "id": "https://www.grid.ac/institutes/grid.11696.39", 
          "name": [
            "Dipartimento di Ingegneria e Scienza dell\u2019informazione, Universit\u00e0 di Trento, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Argentini", 
        "givenName": "Andrea", 
        "id": "sg:person.01242501007.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242501007.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Trento", 
          "id": "https://www.grid.ac/institutes/grid.11696.39", 
          "name": [
            "Dipartimento di Ingegneria e Scienza dell\u2019informazione, Universit\u00e0 di Trento, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blanzieri", 
        "givenName": "Enrico", 
        "id": "sg:person.013033541655.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033541655.32"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/03081079208945033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001559016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/371920.372165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029291580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-04388-8_23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041327325", 
          "https://doi.org/10.1007/978-3-642-04388-8_23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046905453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0004-3702(94)90026-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049557093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0004-3702(94)90026-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049557093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2003.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053545022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2003.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053545022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177698328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064399279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdew.2006.146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093495130"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "In this work we consider the case of the ranking aggregation problem that includes the true ranking in its formulation. The goal is to find an estimation of an unknown true ranking given a set of rankings provided by different quality experts. This is the case when bioinformatic experts provide ranked items involved in an unknown biological phenomenon regulated by its own physical reality. We devise an innovative solution called Belief Ranking Estimator (BRE), based on the belief function framework that permits to represent beliefs on the correctness of each item rank as well as uncertainty on the quality of the rankings from the subjective point of view of the expert. Moreover, weights computed using a true-ranking estimator are applied to the original belief basic assignment in order to take into account the quality of the input rankings. The results of an empirical comparison of BRE with weighting schema against competitor methods for ranking aggregation show that our method improves significantly the performance when the quality of the ranking is heterogeneous.", 
    "editor": [
      {
        "familyName": "Greco", 
        "givenName": "Salvatore", 
        "type": "Person"
      }, 
      {
        "familyName": "Bouchon-Meunier", 
        "givenName": "Bernadette", 
        "type": "Person"
      }, 
      {
        "familyName": "Coletti", 
        "givenName": "Giulianella", 
        "type": "Person"
      }, 
      {
        "familyName": "Fedrizzi", 
        "givenName": "Mario", 
        "type": "Person"
      }, 
      {
        "familyName": "Matarazzo", 
        "givenName": "Benedetto", 
        "type": "Person"
      }, 
      {
        "familyName": "Yager", 
        "givenName": "Ronald R.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-31718-7_53", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-31717-0", 
        "978-3-642-31718-7"
      ], 
      "name": "Advances in Computational Intelligence", 
      "type": "Book"
    }, 
    "name": "Ranking Aggregation Based on Belief Function", 
    "pagination": "511-520", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-31718-7_53"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "986f50a15c590dc954727a13c206a5d68aba0291a00f6cba25427e76c8d0f65a"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031998461"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-31718-7_53", 
      "https://app.dimensions.ai/details/publication/pub.1031998461"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T15:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000263.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-31718-7_53"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-31718-7_53'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-31718-7_53'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-31718-7_53'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-31718-7_53'


 

This table displays all metadata directly associated to this object as RDF triples.

122 TRIPLES      23 PREDICATES      35 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-31718-7_53 schema:about anzsrc-for:14
2 anzsrc-for:1402
3 schema:author N2cb77c22c5cb466a9db90c9a4a42f5bc
4 schema:citation sg:pub.10.1007/978-3-642-04388-8_23
5 https://doi.org/10.1016/0004-3702(94)90026-4
6 https://doi.org/10.1016/j.patrec.2003.09.008
7 https://doi.org/10.1080/03081079208945033
8 https://doi.org/10.1093/bioinformatics/btm158
9 https://doi.org/10.1109/icdew.2006.146
10 https://doi.org/10.1145/371920.372165
11 https://doi.org/10.1214/aoms/1177698328
12 schema:datePublished 2012
13 schema:datePublishedReg 2012-01-01
14 schema:description In this work we consider the case of the ranking aggregation problem that includes the true ranking in its formulation. The goal is to find an estimation of an unknown true ranking given a set of rankings provided by different quality experts. This is the case when bioinformatic experts provide ranked items involved in an unknown biological phenomenon regulated by its own physical reality. We devise an innovative solution called Belief Ranking Estimator (BRE), based on the belief function framework that permits to represent beliefs on the correctness of each item rank as well as uncertainty on the quality of the rankings from the subjective point of view of the expert. Moreover, weights computed using a true-ranking estimator are applied to the original belief basic assignment in order to take into account the quality of the input rankings. The results of an empirical comparison of BRE with weighting schema against competitor methods for ranking aggregation show that our method improves significantly the performance when the quality of the ranking is heterogeneous.
15 schema:editor Nfc8b58e91ecc493c829226c4e8b3a323
16 schema:genre chapter
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf Ndcc929b554d54e9f9191b7a2466a3c10
20 schema:name Ranking Aggregation Based on Belief Function
21 schema:pagination 511-520
22 schema:productId N459a8e7fb03e4619be1df09962b6df99
23 N4a59468fb1a849e3829d3f3ade696092
24 Nc2aef4cf2833427d999202333b6424da
25 schema:publisher N9567a695b55e485682bfe7910f08b3ad
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031998461
27 https://doi.org/10.1007/978-3-642-31718-7_53
28 schema:sdDatePublished 2019-04-15T15:22
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher Nd1a4fef3ad4a486a8afbc43ec0cff282
31 schema:url http://link.springer.com/10.1007/978-3-642-31718-7_53
32 sgo:license sg:explorer/license/
33 sgo:sdDataset chapters
34 rdf:type schema:Chapter
35 N0c4f5c9ddb7a4e6b929a69d722468c85 rdf:first N2dd96a20076b4f06a0f5ae8a32ab7866
36 rdf:rest rdf:nil
37 N1a7e1525c36a4c438d19fa3aa113d45f rdf:first N8cacd2775a4a452c992ed05042fb9855
38 rdf:rest N4dc8ea10fe99484183b15fd411838c74
39 N2cb77c22c5cb466a9db90c9a4a42f5bc rdf:first sg:person.01242501007.24
40 rdf:rest N3ad2d0f765504f699c38a274ee9e4eb1
41 N2dd96a20076b4f06a0f5ae8a32ab7866 schema:familyName Yager
42 schema:givenName Ronald R.
43 rdf:type schema:Person
44 N3ad2d0f765504f699c38a274ee9e4eb1 rdf:first sg:person.013033541655.32
45 rdf:rest rdf:nil
46 N41d029d04ac34c07a6cfe23539b27f63 schema:familyName Matarazzo
47 schema:givenName Benedetto
48 rdf:type schema:Person
49 N459a8e7fb03e4619be1df09962b6df99 schema:name doi
50 schema:value 10.1007/978-3-642-31718-7_53
51 rdf:type schema:PropertyValue
52 N4a59468fb1a849e3829d3f3ade696092 schema:name readcube_id
53 schema:value 986f50a15c590dc954727a13c206a5d68aba0291a00f6cba25427e76c8d0f65a
54 rdf:type schema:PropertyValue
55 N4dc8ea10fe99484183b15fd411838c74 rdf:first N4fbadb73a7ba48b58f1667a440ff9c72
56 rdf:rest Nf15784c0f94340aab5f7842466ad3530
57 N4fbadb73a7ba48b58f1667a440ff9c72 schema:familyName Fedrizzi
58 schema:givenName Mario
59 rdf:type schema:Person
60 N66173304b3354c6791f458dc983d8765 schema:familyName Greco
61 schema:givenName Salvatore
62 rdf:type schema:Person
63 N8cacd2775a4a452c992ed05042fb9855 schema:familyName Coletti
64 schema:givenName Giulianella
65 rdf:type schema:Person
66 N9567a695b55e485682bfe7910f08b3ad schema:location Berlin, Heidelberg
67 schema:name Springer Berlin Heidelberg
68 rdf:type schema:Organisation
69 Nc2aef4cf2833427d999202333b6424da schema:name dimensions_id
70 schema:value pub.1031998461
71 rdf:type schema:PropertyValue
72 Nd1a4fef3ad4a486a8afbc43ec0cff282 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 Ndcc929b554d54e9f9191b7a2466a3c10 schema:isbn 978-3-642-31717-0
75 978-3-642-31718-7
76 schema:name Advances in Computational Intelligence
77 rdf:type schema:Book
78 Nf15784c0f94340aab5f7842466ad3530 rdf:first N41d029d04ac34c07a6cfe23539b27f63
79 rdf:rest N0c4f5c9ddb7a4e6b929a69d722468c85
80 Nf65f4d3e56ab4343803c01d558ac679e rdf:first Nff6fae21cecb44a69a746d0a1fd2c9ca
81 rdf:rest N1a7e1525c36a4c438d19fa3aa113d45f
82 Nfc8b58e91ecc493c829226c4e8b3a323 rdf:first N66173304b3354c6791f458dc983d8765
83 rdf:rest Nf65f4d3e56ab4343803c01d558ac679e
84 Nff6fae21cecb44a69a746d0a1fd2c9ca schema:familyName Bouchon-Meunier
85 schema:givenName Bernadette
86 rdf:type schema:Person
87 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
88 schema:name Economics
89 rdf:type schema:DefinedTerm
90 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
91 schema:name Applied Economics
92 rdf:type schema:DefinedTerm
93 sg:person.01242501007.24 schema:affiliation https://www.grid.ac/institutes/grid.11696.39
94 schema:familyName Argentini
95 schema:givenName Andrea
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242501007.24
97 rdf:type schema:Person
98 sg:person.013033541655.32 schema:affiliation https://www.grid.ac/institutes/grid.11696.39
99 schema:familyName Blanzieri
100 schema:givenName Enrico
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033541655.32
102 rdf:type schema:Person
103 sg:pub.10.1007/978-3-642-04388-8_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041327325
104 https://doi.org/10.1007/978-3-642-04388-8_23
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/0004-3702(94)90026-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049557093
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.patrec.2003.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053545022
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1080/03081079208945033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001559016
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1093/bioinformatics/btm158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046905453
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1109/icdew.2006.146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093495130
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1145/371920.372165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029291580
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1214/aoms/1177698328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064399279
119 rdf:type schema:CreativeWork
120 https://www.grid.ac/institutes/grid.11696.39 schema:alternateName University of Trento
121 schema:name Dipartimento di Ingegneria e Scienza dell’informazione, Università di Trento, Italy
122 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...