Ontology type: schema:Chapter
2012
AUTHORS ABSTRACTThis paper describes an algorithm for computing modular exponentiation using vector (SIMD) instructions. It demonstrates, for the first time, how such a software approach can outperform the classical scalar (ALU) implementations, on the high end x86_64 platforms, if they have a wide SIMD architecture. Here, we target speeding up RSA2048 on Intel’s soon-to-arrive platforms that support the AVX2 instruction set. To this end, we applied our algorithm and generated an optimized AVX2-based software implementation of 1024-bit modular exponentiation. This implementation is seamlessly integrated into OpenSSL, by patching over OpenSSL 1.0.1. Our results show that our implementation requires 51% less instructions than the current OpenSSL 1.0.1 implementation. This illustrates the potential significant speedup in the RSA2048 performance, which is expected in the coming (2013) Intel processors. The impact of such speedup on servers is noticeable, especially since migration to RSA2048 is recommended by NIST, starting from 2013. More... »
PAGES119-135
Arithmetic of Finite Fields
ISBN
978-3-642-31661-6
978-3-642-31662-3
http://scigraph.springernature.com/pub.10.1007/978-3-642-31662-3_9
DOIhttp://dx.doi.org/10.1007/978-3-642-31662-3_9
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1032931092
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0803",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Computer Software",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Haifa",
"id": "https://www.grid.ac/institutes/grid.18098.38",
"name": [
"Department of Mathematics, University of Haifa, Israel"
],
"type": "Organization"
},
"familyName": "Gueron",
"givenName": "Shay",
"id": "sg:person.01343073557.40",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343073557.40"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Intel Corporation, Israel Development Center, Haifa, Israel"
],
"type": "Organization"
},
"familyName": "Krasnov",
"givenName": "Vlad",
"id": "sg:person.014171561755.37",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014171561755.37"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/3-540-45760-7_3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039182300",
"https://doi.org/10.1007/3-540-45760-7_3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/3-540-48059-5_9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040330126",
"https://doi.org/10.1007/3-540-48059-5_9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/3-540-48059-5_9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040330126",
"https://doi.org/10.1007/3-540-48059-5_9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s13389-012-0031-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041407203",
"https://doi.org/10.1007/s13389-012-0031-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/3-540-36400-5_5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053463230",
"https://doi.org/10.1007/3-540-36400-5_5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/3-540-36400-5_5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053463230",
"https://doi.org/10.1007/3-540-36400-5_5"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1049/el:19991230",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1056788977"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/comjnl/bxm099",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059479898"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tc.2004.100",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061533917"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/itng.2012.61",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1094365024"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1017/cbo9780511921698",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1098776070"
],
"type": "CreativeWork"
}
],
"datePublished": "2012",
"datePublishedReg": "2012-01-01",
"description": "This paper describes an algorithm for computing modular exponentiation using vector (SIMD) instructions. It demonstrates, for the first time, how such a software approach can outperform the classical scalar (ALU) implementations, on the high end x86_64 platforms, if they have a wide SIMD architecture. Here, we target speeding up RSA2048 on Intel\u2019s soon-to-arrive platforms that support the AVX2 instruction set. To this end, we applied our algorithm and generated an optimized AVX2-based software implementation of 1024-bit modular exponentiation. This implementation is seamlessly integrated into OpenSSL, by patching over OpenSSL 1.0.1. Our results show that our implementation requires 51% less instructions than the current OpenSSL 1.0.1 implementation. This illustrates the potential significant speedup in the RSA2048 performance, which is expected in the coming (2013) Intel processors. The impact of such speedup on servers is noticeable, especially since migration to RSA2048 is recommended by NIST, starting from 2013.",
"editor": [
{
"familyName": "\u00d6zbudak",
"givenName": "Ferruh",
"type": "Person"
},
{
"familyName": "Rodr\u00edguez-Henr\u00edquez",
"givenName": "Francisco",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-31662-3_9",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-642-31661-6",
"978-3-642-31662-3"
],
"name": "Arithmetic of Finite Fields",
"type": "Book"
},
"name": "Software Implementation of Modular Exponentiation, Using Advanced Vector Instructions Architectures",
"pagination": "119-135",
"productId": [
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-31662-3_9"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"9ce13a23220f71d7d4e881423695537267844b683149688f1fcb40fa10655910"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1032931092"
]
}
],
"publisher": {
"location": "Berlin, Heidelberg",
"name": "Springer Berlin Heidelberg",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-31662-3_9",
"https://app.dimensions.ai/details/publication/pub.1032931092"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-15T14:26",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000263.jsonl",
"type": "Chapter",
"url": "http://link.springer.com/10.1007/978-3-642-31662-3_9"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-31662-3_9'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-31662-3_9'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-31662-3_9'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-31662-3_9'
This table displays all metadata directly associated to this object as RDF triples.
110 TRIPLES
23 PREDICATES
36 URIs
20 LITERALS
8 BLANK NODES