The Role of Empirical Mode Decomposition on Emotion Classification Using Stimulated EEG Signals View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013

AUTHORS

Anwesha Khasnobish , Saugat Bhattacharyya , Garima Singh , Arindam Jati , Amit Konar , D. N. Tibarewala , R. Janarthanan

ABSTRACT

An efficient scheme of emotion recognition using EEG signals is an initiation to our quest for developing emotionally intelligent systems and devices, in order to enhance the performance quality of the same. Classification of emotions, both euphoric and negative, using stimulated EEG signals acquired from subjects whose different emotional states were elicited using audio-visual stimuli. The underlying strategy involved the extraction of Power spectral density(PSD) and empirical mode decomposition (EMD) features from the raw EEG data and their classification using linear discriminant analysis (LDA) and linear support vector machine (SVM) thereby classifying the emotions into their respective emotion classes: neutral, happy and sad, with an average classification accuracy of 76.46%,where the neutral state has been classified most efficiently, with an average classification accuracy of 80.86%. The classification accuracy increases with EMD features with reduction in time and computational complexity. LDA is found to perform better than LSVM with EMD features. More... »

PAGES

55-62

References to SciGraph publications

Book

TITLE

Advances in Computing and Information Technology

ISBN

978-3-642-31599-2
978-3-642-31600-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-31600-5_6

DOI

http://dx.doi.org/10.1007/978-3-642-31600-5_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016918024


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "School of Bioscience and Engineering, Jadavpur University, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khasnobish", 
        "givenName": "Anwesha", 
        "id": "sg:person.01260452574.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260452574.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "School of Bioscience and Engineering, Jadavpur University, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhattacharyya", 
        "givenName": "Saugat", 
        "id": "sg:person.07421667055.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07421667055.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Dept. of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Singh", 
        "givenName": "Garima", 
        "id": "sg:person.010662703442.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010662703442.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Dept. of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jati", 
        "givenName": "Arindam", 
        "id": "sg:person.011524344647.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011524344647.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Dept. of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Konar", 
        "givenName": "Amit", 
        "id": "sg:person.01337053064.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337053064.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "School of Bioscience and Engineering, Jadavpur University, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tibarewala", 
        "givenName": "D. N.", 
        "id": "sg:person.010726132604.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010726132604.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Anna University, Chennai", 
          "id": "https://www.grid.ac/institutes/grid.252262.3", 
          "name": [
            "Dept. of Information Technology, Jaya Engineering College, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Janarthanan", 
        "givenName": "R.", 
        "id": "sg:person.013316247664.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013316247664.76"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/11848035_70", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015218489", 
          "https://doi.org/10.1007/11848035_70"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11848035_70", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015218489", 
          "https://doi.org/10.1007/11848035_70"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1741-2560/3/2/008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027814393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2008.11.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028257685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1030108965", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-68609-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030108965", 
          "https://doi.org/10.1007/978-3-540-68609-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-68609-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030108965", 
          "https://doi.org/10.1007/978-3-540-68609-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.1978.4309917", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031276930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0028-3932(84)90008-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034257502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02699939508408966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041617440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1998.0193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048418364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1741-2560/4/2/r01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053010107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.954607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061157321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jproc.2003.817122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061296150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/nabic.2009.5393891", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094411467"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "An efficient scheme of emotion recognition using EEG signals is an initiation to our quest for developing emotionally intelligent systems and devices, in order to enhance the performance quality of the same. Classification of emotions, both euphoric and negative, using stimulated EEG signals acquired from subjects whose different emotional states were elicited using audio-visual stimuli. The underlying strategy involved the extraction of Power spectral density(PSD) and empirical mode decomposition (EMD) features from the raw EEG data and their classification using linear discriminant analysis (LDA) and linear support vector machine (SVM) thereby classifying the emotions into their respective emotion classes: neutral, happy and sad, with an average classification accuracy of 76.46%,where the neutral state has been classified most efficiently, with an average classification accuracy of 80.86%. The classification accuracy increases with EMD features with reduction in time and computational complexity. LDA is found to perform better than LSVM with EMD features.", 
    "editor": [
      {
        "familyName": "Meghanathan", 
        "givenName": "Natarajan", 
        "type": "Person"
      }, 
      {
        "familyName": "Nagamalai", 
        "givenName": "Dhinaharan", 
        "type": "Person"
      }, 
      {
        "familyName": "Chaki", 
        "givenName": "Nabendu", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-31600-5_6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-31599-2", 
        "978-3-642-31600-5"
      ], 
      "name": "Advances in Computing and Information Technology", 
      "type": "Book"
    }, 
    "name": "The Role of Empirical Mode Decomposition on Emotion Classification Using Stimulated EEG Signals", 
    "pagination": "55-62", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-31600-5_6"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "509b11133c0b6f59a7fd6d01fd64275965de4b1cacacecf7ccbe29d5f23f6f87"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016918024"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-31600-5_6", 
      "https://app.dimensions.ai/details/publication/pub.1016918024"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T15:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000253.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-31600-5_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-31600-5_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-31600-5_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-31600-5_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-31600-5_6'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      23 PREDICATES      40 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-31600-5_6 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N6fc4f5435bc1431c85031a4176e4b4a7
4 schema:citation sg:pub.10.1007/11848035_70
5 sg:pub.10.1007/978-3-540-68609-5
6 https://app.dimensions.ai/details/publication/pub.1030108965
7 https://doi.org/10.1016/0028-3932(84)90008-3
8 https://doi.org/10.1016/j.neucom.2008.11.007
9 https://doi.org/10.1080/02699939508408966
10 https://doi.org/10.1088/1741-2560/3/2/008
11 https://doi.org/10.1088/1741-2560/4/2/r01
12 https://doi.org/10.1098/rspa.1998.0193
13 https://doi.org/10.1109/34.954607
14 https://doi.org/10.1109/jproc.2003.817122
15 https://doi.org/10.1109/nabic.2009.5393891
16 https://doi.org/10.1109/tsmc.1978.4309917
17 schema:datePublished 2013
18 schema:datePublishedReg 2013-01-01
19 schema:description An efficient scheme of emotion recognition using EEG signals is an initiation to our quest for developing emotionally intelligent systems and devices, in order to enhance the performance quality of the same. Classification of emotions, both euphoric and negative, using stimulated EEG signals acquired from subjects whose different emotional states were elicited using audio-visual stimuli. The underlying strategy involved the extraction of Power spectral density(PSD) and empirical mode decomposition (EMD) features from the raw EEG data and their classification using linear discriminant analysis (LDA) and linear support vector machine (SVM) thereby classifying the emotions into their respective emotion classes: neutral, happy and sad, with an average classification accuracy of 76.46%,where the neutral state has been classified most efficiently, with an average classification accuracy of 80.86%. The classification accuracy increases with EMD features with reduction in time and computational complexity. LDA is found to perform better than LSVM with EMD features.
20 schema:editor Nf2dfc487c8bf45e7aaa1ff6f4757f5e4
21 schema:genre chapter
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N9c1b4d74c2b24db69ade6f1510c7d2af
25 schema:name The Role of Empirical Mode Decomposition on Emotion Classification Using Stimulated EEG Signals
26 schema:pagination 55-62
27 schema:productId Na521c57105794967bc18e5bd2ea6d8a9
28 Ne90d7ed78c7645ff993af39d651bb834
29 Nea3f93141be742989fa603c052dd5472
30 schema:publisher N11cc7bba8019406f84d3ff67301a1291
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016918024
32 https://doi.org/10.1007/978-3-642-31600-5_6
33 schema:sdDatePublished 2019-04-15T15:20
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher Nfd2ccc7f00c049f8a75b8e2de169548f
36 schema:url http://link.springer.com/10.1007/978-3-642-31600-5_6
37 sgo:license sg:explorer/license/
38 sgo:sdDataset chapters
39 rdf:type schema:Chapter
40 N09f935a8fc53451baae3801bd5ccf807 rdf:first sg:person.01337053064.29
41 rdf:rest Nd103ed8f54d24989a14e24b36fa4008f
42 N11cc7bba8019406f84d3ff67301a1291 schema:location Berlin, Heidelberg
43 schema:name Springer Berlin Heidelberg
44 rdf:type schema:Organisation
45 N23e0833679ef444db3e07f17f5eafdb4 schema:familyName Meghanathan
46 schema:givenName Natarajan
47 rdf:type schema:Person
48 N4527f4989b8d408db86acb6364c20ef7 rdf:first sg:person.010662703442.33
49 rdf:rest N512d45dce30e48a9a8cf3952a0fcb38e
50 N4ac185f9a27344528b8de758495a52e0 schema:familyName Chaki
51 schema:givenName Nabendu
52 rdf:type schema:Person
53 N512d45dce30e48a9a8cf3952a0fcb38e rdf:first sg:person.011524344647.45
54 rdf:rest N09f935a8fc53451baae3801bd5ccf807
55 N556329f93c7948ed956f110c2430ad2c schema:familyName Nagamalai
56 schema:givenName Dhinaharan
57 rdf:type schema:Person
58 N6fc4f5435bc1431c85031a4176e4b4a7 rdf:first sg:person.01260452574.41
59 rdf:rest Nfa1c0c16274a4efe826823b0b26a6728
60 N789d450bc4e9448f8ad770219602a336 rdf:first sg:person.013316247664.76
61 rdf:rest rdf:nil
62 N7d47ee377376435a87761310ded9ab30 rdf:first N556329f93c7948ed956f110c2430ad2c
63 rdf:rest N7f6dbcda515a4aa6b91889768f2c5ef7
64 N7f6dbcda515a4aa6b91889768f2c5ef7 rdf:first N4ac185f9a27344528b8de758495a52e0
65 rdf:rest rdf:nil
66 N9c1b4d74c2b24db69ade6f1510c7d2af schema:isbn 978-3-642-31599-2
67 978-3-642-31600-5
68 schema:name Advances in Computing and Information Technology
69 rdf:type schema:Book
70 Na521c57105794967bc18e5bd2ea6d8a9 schema:name dimensions_id
71 schema:value pub.1016918024
72 rdf:type schema:PropertyValue
73 Nd103ed8f54d24989a14e24b36fa4008f rdf:first sg:person.010726132604.03
74 rdf:rest N789d450bc4e9448f8ad770219602a336
75 Ne90d7ed78c7645ff993af39d651bb834 schema:name doi
76 schema:value 10.1007/978-3-642-31600-5_6
77 rdf:type schema:PropertyValue
78 Nea3f93141be742989fa603c052dd5472 schema:name readcube_id
79 schema:value 509b11133c0b6f59a7fd6d01fd64275965de4b1cacacecf7ccbe29d5f23f6f87
80 rdf:type schema:PropertyValue
81 Nf2dfc487c8bf45e7aaa1ff6f4757f5e4 rdf:first N23e0833679ef444db3e07f17f5eafdb4
82 rdf:rest N7d47ee377376435a87761310ded9ab30
83 Nfa1c0c16274a4efe826823b0b26a6728 rdf:first sg:person.07421667055.72
84 rdf:rest N4527f4989b8d408db86acb6364c20ef7
85 Nfd2ccc7f00c049f8a75b8e2de169548f schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
88 schema:name Information and Computing Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
91 schema:name Artificial Intelligence and Image Processing
92 rdf:type schema:DefinedTerm
93 sg:person.010662703442.33 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
94 schema:familyName Singh
95 schema:givenName Garima
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010662703442.33
97 rdf:type schema:Person
98 sg:person.010726132604.03 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
99 schema:familyName Tibarewala
100 schema:givenName D. N.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010726132604.03
102 rdf:type schema:Person
103 sg:person.011524344647.45 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
104 schema:familyName Jati
105 schema:givenName Arindam
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011524344647.45
107 rdf:type schema:Person
108 sg:person.01260452574.41 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
109 schema:familyName Khasnobish
110 schema:givenName Anwesha
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260452574.41
112 rdf:type schema:Person
113 sg:person.013316247664.76 schema:affiliation https://www.grid.ac/institutes/grid.252262.3
114 schema:familyName Janarthanan
115 schema:givenName R.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013316247664.76
117 rdf:type schema:Person
118 sg:person.01337053064.29 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
119 schema:familyName Konar
120 schema:givenName Amit
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337053064.29
122 rdf:type schema:Person
123 sg:person.07421667055.72 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
124 schema:familyName Bhattacharyya
125 schema:givenName Saugat
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07421667055.72
127 rdf:type schema:Person
128 sg:pub.10.1007/11848035_70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015218489
129 https://doi.org/10.1007/11848035_70
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/978-3-540-68609-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030108965
132 https://doi.org/10.1007/978-3-540-68609-5
133 rdf:type schema:CreativeWork
134 https://app.dimensions.ai/details/publication/pub.1030108965 schema:CreativeWork
135 https://doi.org/10.1016/0028-3932(84)90008-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034257502
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.neucom.2008.11.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028257685
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1080/02699939508408966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041617440
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1088/1741-2560/3/2/008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027814393
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1088/1741-2560/4/2/r01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053010107
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1098/rspa.1998.0193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048418364
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/34.954607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157321
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/jproc.2003.817122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061296150
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/nabic.2009.5393891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094411467
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/tsmc.1978.4309917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031276930
154 rdf:type schema:CreativeWork
155 https://www.grid.ac/institutes/grid.216499.1 schema:alternateName Jadavpur University
156 schema:name Dept. of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, India
157 School of Bioscience and Engineering, Jadavpur University, Kolkata, India
158 rdf:type schema:Organization
159 https://www.grid.ac/institutes/grid.252262.3 schema:alternateName Anna University, Chennai
160 schema:name Dept. of Information Technology, Jaya Engineering College, Chennai, India
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...